Spaces:
Running
Running
File size: 4,650 Bytes
751936e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
"""
## 简介
- bert和clue词典比较 https://github.com/CLUEbenchmark/CLUECorpus2020#%E8%AF%8D%E8%A1%A8%E4%BB%8B%E7%BB%8D
- 相关issue: https://github.com/google-research/bert/issues/396
- bert中文词典大小21128(2万)
- 英文字母都小写了(有没有不小写的?)
-
args:
-
-
output:
-
python bpe_oov.py \
--vocab-bpe vocab.google.txt \
--inputs ../raw/discovery_all \
--workers 60
# stderr打印在屏幕,stdout放在oov_lines
python bpe_oov.py \
--vocab-bpe vocab.clue_plus.txt \
--inputs ../raw/discovery_all \
--workers 60 > oov_lines
python bpe_oov.py \
--vocab-bpe vocab.clue_plus.txt \
--inputs ../raw/small/jd.train.raw \
--workers 60 > oov_lines
## 整词
"""
import argparse
from transformers import BertTokenizer
import contextlib
import sys
from collections import defaultdict
from multiprocessing import Pool
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--vocab-bpe",
type=str,
help='path to vocab.bpe',
)
parser.add_argument(
"--inputs",
nargs="+",
default=['-'],
help="input files to filter/encode",
)
parser.add_argument("--workers", type=int, default=20)
args = parser.parse_args()
with contextlib.ExitStack() as stack:
inputs = [
stack.enter_context(open(input, "r", encoding="utf-8"))
if input != "-" else sys.stdin
for input in args.inputs
]
encoder = MultiprocessingEncoder(args.vocab_bpe)
pool = Pool(args.workers, initializer=encoder.initializer)
oov_lines = pool.imap(encoder.get_oov_lines, zip(*inputs), 100)
oov_count = defaultdict(int)
for i, oov_line in enumerate(oov_lines, start=1): # 主要的计算模块
for oov in oov_line:
oov_count[oov] += 1
if i % 10000 == 0:
print("processed {} lines".format(i), file=sys.stderr)
sorted_oov = sorted(oov_count.items(), key=lambda kv:kv[1], reverse=True)
with open('oov', 'w', encoding='utf-8') as f_out:
f_out.write('\n'.join(['%s %d' % (k,v) for k, v in sorted_oov]))
class MultiprocessingEncoder(object):
def __init__(self, vocab_bpe):
self.vocab_bpe = vocab_bpe
def initializer(self): # 为啥不放到 __init__ ?
global bpe # 为什么用global,设置成成员变量不行吗?
bpe = BertTokenizer(self.vocab_bpe)
def get_oov(self, line):
global bpe
oov_tokens = []
for token in bpe.basic_tokenizer.tokenize(line, never_split=bpe.all_special_tokens):
for sub_token in bpe.wordpiece_tokenizer.tokenize(token):
if sub_token == '[UNK]':
oov_tokens.append(token)
if len(oov_tokens) > 0: # 不用在这里打印,因为有些明显需要添加的token
print(','.join(oov_tokens) + '\t' + line)
return oov_tokens
def encode(self, line):
global bpe
ids = bpe.encode(line)
return list(map(str, ids))
def decode(self, tokens):
global bpe
return bpe.decode(tokens)
def get_oov_lines(self, lines):
"""
Encode a set of lines. All lines will be encoded together.
"""
all_oov = []
for line in lines:
line = line.strip()
oov_tokens = self.get_oov(line)
all_oov += oov_tokens
return all_oov
def encode_lines(self, lines):
"""
Encode a set of lines. All lines will be encoded together.
"""
enc_lines = []
for line in lines:
line = line.strip()
if len(line) == 0 and not self.args.keep_empty:
return ["EMPTY", None]
tokens = self.encode(line)
enc_lines.append(" ".join(tokens))
return ["PASS", enc_lines]
def test():
encoder = MultiprocessingEncoder('vocab.clue_plus.txt')
encoder.initializer()
line = '蔲驰的,africa❸ 11111111111165000mg❗2⃣piqueddasdasddasdasda,明天25℃,面积120㎡,大约2~3米' \
'3200×1800分辨率,TAS海关密码锁,PC镜片,采用A+节能能,胶包裏,包裹,薄至6㎜,鬼塚虎,' \
'多种矿物元素,特别是锶,靚眼,门闩和便携把手,箜篌刺绣,5㎝,锐蝮蛇竞技版鼠标,滑屛式,T桖,sub+dvi,' \
'呵护牙齦,Baumatic™ ,'
en = encoder.encode(line)
print(line)
print(en)
print(encoder.decode(en))
if __name__ == "__main__":
#main()
test()
|