Spaces:
Running
Running
File size: 13,922 Bytes
751936e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import absolute_import, division, print_function, unicode_literals
import sys
import json
import logging
import os
import regex as re
from io import open
from functools import lru_cache
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
"gpt2": 1024,
}
VOCAB_NAME = "vocab.json"
MERGES_NAME = "merges.txt"
SPECIAL_TOKENS_NAME = "special_tokens.txt"
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
_chr = unichr if sys.version_info[0] == 2 else chr
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [_chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class GPT2Tokenizer(object):
"""
GPT-2 BPE tokenizer. Peculiarities:
- Byte-level BPE
"""
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs
):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
special_tokens_file = None
else:
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
special_tokens_file = os.path.join(
pretrained_model_name_or_path, SPECIAL_TOKENS_NAME
)
if not os.path.exists(special_tokens_file):
special_tokens_file = None
else:
logger.info(
"loading special tokens file {}".format(special_tokens_file)
)
# redirect to the cache, if necessary
try:
from .file_utils import cached_path
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path,
", ".join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
pretrained_model_name_or_path,
vocab_file,
merges_file,
)
)
return None
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
logger.info("loading vocabulary file {}".format(vocab_file))
logger.info("loading merges file {}".format(merges_file))
else:
logger.info(
"loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file
)
)
logger.info(
"loading merges file {} from cache at {}".format(
merges_file, resolved_merges_file
)
)
if (
pretrained_model_name_or_path
in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP
):
# if we're using a pretrained model, ensure the tokenizer won't index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[
pretrained_model_name_or_path
]
kwargs["max_len"] = min(kwargs.get("max_len", int(1e12)), max_len)
# Instantiate tokenizer.
if special_tokens_file and "special_tokens" not in kwargs:
special_tokens = (
open(special_tokens_file, encoding="utf-8").read().split("\n")[:-1]
)
else:
special_tokens = kwargs.pop("special_tokens", [])
tokenizer = cls(
resolved_vocab_file,
resolved_merges_file,
special_tokens=special_tokens,
*inputs,
**kwargs
)
return tokenizer
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
special_tokens=None,
max_len=None,
):
self.max_len = max_len if max_len is not None else int(1e12)
self.encoder = json.load(open(vocab_file))
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
bpe_data = open(merges_file, encoding="utf-8").read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_data]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
# Should haved added re.IGNORECASE so BPE merges can happen for
# capitalized versions of contractions
self.pat = re.compile(
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
)
self.special_tokens = {}
self.special_tokens_decoder = {}
self.set_special_tokens(special_tokens)
def __len__(self):
return len(self.encoder) + len(self.special_tokens)
def set_special_tokens(self, special_tokens):
"""Add a list of additional tokens to the encoder.
The additional tokens are indexed starting from the last index of the
current vocabulary in the order of the `special_tokens` list.
"""
if not special_tokens:
self.special_tokens = {}
self.special_tokens_decoder = {}
return
self.special_tokens = dict(
(tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens)
)
self.special_tokens_decoder = {v: k for k, v in self.special_tokens.items()}
logger.info("Special tokens {}".format(self.special_tokens))
@lru_cache(maxsize=131072)
def bpe(self, token):
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except BaseException:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
return word
def tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
if sys.version_info[0] == 2:
token = "".join(self.byte_encoder[ord(b)] for b in token)
else:
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def convert_tokens_to_ids(self, tokens):
"""Converts a sequence of tokens into ids using the vocab."""
ids = []
if isinstance(tokens, str) or (
sys.version_info[0] == 2 and isinstance(tokens, unicode)
):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
else:
return self.encoder.get(tokens, 0)
for token in tokens:
if token in self.special_tokens:
ids.append(self.special_tokens[token])
else:
ids.append(self.encoder.get(token, 0))
if len(ids) > self.max_len:
logger.warning(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this OpenAI GPT model ({} > {}). Running this"
" sequence through the model will result in indexing errors".format(
len(ids), self.max_len
)
)
return ids
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
"""Converts a sequence of ids in BPE tokens using the vocab."""
tokens = []
for i in ids:
if i in self.special_tokens_decoder:
if not skip_special_tokens:
tokens.append(self.special_tokens_decoder[i])
else:
tokens.append(self.decoder[i])
return tokens
def encode(self, text):
return self.convert_tokens_to_ids(self.tokenize(text))
def decode(self, tokens):
text = "".join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode(
"utf-8", errors=self.errors
)
return text
def save_vocabulary(self, vocab_path):
"""Save the tokenizer vocabulary and merge files to a directory."""
if not os.path.isdir(vocab_path):
logger.error(
"Vocabulary path ({}) should be a directory".format(vocab_path)
)
return
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
merge_file = os.path.join(vocab_path, MERGES_NAME)
special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, ensure_ascii=False))
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(
self.bpe_ranks.items(), key=lambda kv: kv[1]
):
if index != token_index:
logger.warning(
"Saving vocabulary to {}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!".format(
merge_file
)
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
index = len(self.encoder)
with open(special_tokens_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(
self.special_tokens.items(), key=lambda kv: kv[1]
):
if index != token_index:
logger.warning(
"Saving special tokens vocabulary to {}: BPE indices are not consecutive."
" Please check that the tokenizer is not corrupted!".format(
special_tokens_file
)
)
index = token_index
writer.write(token + "\n")
index += 1
return vocab_file, merge_file, special_tokens_file
|