Spaces:
Running
Running
File size: 2,988 Bytes
4a3c603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# coding=utf-8
# author: xusong <[email protected]>
# time: 2022/8/23 17:08
import time
import torch
import gradio as gr
from info import article
from transformers import FillMaskPipeline
from transformers import BertTokenizer
from kplug.modeling_kplug import KplugForMaskedLM
from pycorrector.bert.bert_corrector import BertCorrector
from pycorrector import config
from loguru import logger
device_id = 0 if torch.cuda.is_available() else -1
css = """
.category-legend {display: none !important}
"""
class KplugCorrector(BertCorrector):
def __init__(self, bert_model_dir=config.bert_model_dir, device=device_id):
super(BertCorrector, self).__init__()
self.name = 'kplug_corrector'
t1 = time.time()
tokenizer = BertTokenizer.from_pretrained("eson/kplug-base-encoder")
model = KplugForMaskedLM.from_pretrained("eson/kplug-base-encoder")
self.model = FillMaskPipeline(model=model, tokenizer=tokenizer, device=device)
if self.model:
self.mask = self.model.tokenizer.mask_token
logger.debug('Loaded bert model: %s, spend: %.3f s.' % (bert_model_dir, time.time() - t1))
corrector = KplugCorrector()
error_sentences = [
'少先队员因该为老人让坐',
'机七学习是人工智能领遇最能体现智能的一个分知',
'今天心情很好',
]
def mock_data():
corrected_sent = '机器学习是人工智能领域最能体现智能的一个分知'
errs = [('七', '器', 1, 2), ('遇', '域', 10, 11)]
return corrected_sent, errs
def correct(sent):
"""
{"text": sent, "entities": [{}, {}] } 是 gradio 要求的格式,详见 https://www.gradio.app/docs/highlightedtext
"""
corrected_sent, errs = corrector.bert_correct(sent)
# corrected_sent, errs = mock_data()
print("original sentence:{} => {}, err:{}".format(sent, corrected_sent, errs))
output = [{"entity": "纠错", "score": 0.5, "word": err[1], "start": err[2], "end": err[3]} for i, err in
enumerate(errs)]
return {"text": corrected_sent, "entities": output}, errs
def test():
for sent in error_sentences:
corrected_sent, err = corrector.bert_correct(sent)
print("original sentence:{} => {}, err:{}".format(sent, corrected_sent, err))
corr_iface = gr.Interface(
fn=correct,
inputs=gr.Textbox(
label="输入文本",
value="少先队员因该为老人让坐"),
outputs=[
gr.HighlightedText(
label="文本纠错",
show_legend=True,
),
gr.JSON(
# label="JSON Output"
)
],
examples=error_sentences,
title="文本纠错(Corrector)",
description='自动对汉语文本中的拼写、语法、标点等多种问题进行纠错校对,提示错误位置并返回修改建议',
article=article,
css=css
)
if __name__ == "__main__":
# test()
# correct("少先队员因该为老人让坐")
corr_iface.launch()
|