|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import builtins |
|
from types import CodeType |
|
from typing import Any, Callable |
|
|
|
from . import Image, _imagingmath |
|
from ._deprecate import deprecate |
|
|
|
|
|
class _Operand: |
|
"""Wraps an image operand, providing standard operators""" |
|
|
|
def __init__(self, im: Image.Image): |
|
self.im = im |
|
|
|
def __fixup(self, im1: _Operand | float) -> Image.Image: |
|
|
|
if isinstance(im1, _Operand): |
|
|
|
if im1.im.mode in ("1", "L"): |
|
return im1.im.convert("I") |
|
elif im1.im.mode in ("I", "F"): |
|
return im1.im |
|
else: |
|
msg = f"unsupported mode: {im1.im.mode}" |
|
raise ValueError(msg) |
|
else: |
|
|
|
if isinstance(im1, (int, float)) and self.im.mode in ("1", "L", "I"): |
|
return Image.new("I", self.im.size, im1) |
|
else: |
|
return Image.new("F", self.im.size, im1) |
|
|
|
def apply( |
|
self, |
|
op: str, |
|
im1: _Operand | float, |
|
im2: _Operand | float | None = None, |
|
mode: str | None = None, |
|
) -> _Operand: |
|
im_1 = self.__fixup(im1) |
|
if im2 is None: |
|
|
|
out = Image.new(mode or im_1.mode, im_1.size, None) |
|
im_1.load() |
|
try: |
|
op = getattr(_imagingmath, f"{op}_{im_1.mode}") |
|
except AttributeError as e: |
|
msg = f"bad operand type for '{op}'" |
|
raise TypeError(msg) from e |
|
_imagingmath.unop(op, out.im.id, im_1.im.id) |
|
else: |
|
|
|
im_2 = self.__fixup(im2) |
|
if im_1.mode != im_2.mode: |
|
|
|
if im_1.mode != "F": |
|
im_1 = im_1.convert("F") |
|
if im_2.mode != "F": |
|
im_2 = im_2.convert("F") |
|
if im_1.size != im_2.size: |
|
|
|
size = ( |
|
min(im_1.size[0], im_2.size[0]), |
|
min(im_1.size[1], im_2.size[1]), |
|
) |
|
if im_1.size != size: |
|
im_1 = im_1.crop((0, 0) + size) |
|
if im_2.size != size: |
|
im_2 = im_2.crop((0, 0) + size) |
|
out = Image.new(mode or im_1.mode, im_1.size, None) |
|
im_1.load() |
|
im_2.load() |
|
try: |
|
op = getattr(_imagingmath, f"{op}_{im_1.mode}") |
|
except AttributeError as e: |
|
msg = f"bad operand type for '{op}'" |
|
raise TypeError(msg) from e |
|
_imagingmath.binop(op, out.im.id, im_1.im.id, im_2.im.id) |
|
return _Operand(out) |
|
|
|
|
|
def __bool__(self) -> bool: |
|
|
|
return self.im.getbbox() is not None |
|
|
|
def __abs__(self) -> _Operand: |
|
return self.apply("abs", self) |
|
|
|
def __pos__(self) -> _Operand: |
|
return self |
|
|
|
def __neg__(self) -> _Operand: |
|
return self.apply("neg", self) |
|
|
|
|
|
def __add__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("add", self, other) |
|
|
|
def __radd__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("add", other, self) |
|
|
|
def __sub__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("sub", self, other) |
|
|
|
def __rsub__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("sub", other, self) |
|
|
|
def __mul__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("mul", self, other) |
|
|
|
def __rmul__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("mul", other, self) |
|
|
|
def __truediv__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("div", self, other) |
|
|
|
def __rtruediv__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("div", other, self) |
|
|
|
def __mod__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("mod", self, other) |
|
|
|
def __rmod__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("mod", other, self) |
|
|
|
def __pow__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("pow", self, other) |
|
|
|
def __rpow__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("pow", other, self) |
|
|
|
|
|
def __invert__(self) -> _Operand: |
|
return self.apply("invert", self) |
|
|
|
def __and__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("and", self, other) |
|
|
|
def __rand__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("and", other, self) |
|
|
|
def __or__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("or", self, other) |
|
|
|
def __ror__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("or", other, self) |
|
|
|
def __xor__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("xor", self, other) |
|
|
|
def __rxor__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("xor", other, self) |
|
|
|
def __lshift__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("lshift", self, other) |
|
|
|
def __rshift__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("rshift", self, other) |
|
|
|
|
|
def __eq__(self, other): |
|
return self.apply("eq", self, other) |
|
|
|
def __ne__(self, other): |
|
return self.apply("ne", self, other) |
|
|
|
def __lt__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("lt", self, other) |
|
|
|
def __le__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("le", self, other) |
|
|
|
def __gt__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("gt", self, other) |
|
|
|
def __ge__(self, other: _Operand | float) -> _Operand: |
|
return self.apply("ge", self, other) |
|
|
|
|
|
|
|
def imagemath_int(self: _Operand) -> _Operand: |
|
return _Operand(self.im.convert("I")) |
|
|
|
|
|
def imagemath_float(self: _Operand) -> _Operand: |
|
return _Operand(self.im.convert("F")) |
|
|
|
|
|
|
|
def imagemath_equal(self: _Operand, other: _Operand | float | None) -> _Operand: |
|
return self.apply("eq", self, other, mode="I") |
|
|
|
|
|
def imagemath_notequal(self: _Operand, other: _Operand | float | None) -> _Operand: |
|
return self.apply("ne", self, other, mode="I") |
|
|
|
|
|
def imagemath_min(self: _Operand, other: _Operand | float | None) -> _Operand: |
|
return self.apply("min", self, other) |
|
|
|
|
|
def imagemath_max(self: _Operand, other: _Operand | float | None) -> _Operand: |
|
return self.apply("max", self, other) |
|
|
|
|
|
def imagemath_convert(self: _Operand, mode: str) -> _Operand: |
|
return _Operand(self.im.convert(mode)) |
|
|
|
|
|
ops = { |
|
"int": imagemath_int, |
|
"float": imagemath_float, |
|
"equal": imagemath_equal, |
|
"notequal": imagemath_notequal, |
|
"min": imagemath_min, |
|
"max": imagemath_max, |
|
"convert": imagemath_convert, |
|
} |
|
|
|
|
|
def lambda_eval( |
|
expression: Callable[[dict[str, Any]], Any], |
|
options: dict[str, Any] = {}, |
|
**kw: Any, |
|
) -> Any: |
|
""" |
|
Returns the result of an image function. |
|
|
|
:py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band |
|
images, use the :py:meth:`~PIL.Image.Image.split` method or |
|
:py:func:`~PIL.Image.merge` function. |
|
|
|
:param expression: A function that receives a dictionary. |
|
:param options: Values to add to the function's dictionary. You |
|
can either use a dictionary, or one or more keyword |
|
arguments. |
|
:return: The expression result. This is usually an image object, but can |
|
also be an integer, a floating point value, or a pixel tuple, |
|
depending on the expression. |
|
""" |
|
|
|
args: dict[str, Any] = ops.copy() |
|
args.update(options) |
|
args.update(kw) |
|
for k, v in args.items(): |
|
if hasattr(v, "im"): |
|
args[k] = _Operand(v) |
|
|
|
out = expression(args) |
|
try: |
|
return out.im |
|
except AttributeError: |
|
return out |
|
|
|
|
|
def unsafe_eval( |
|
expression: str, |
|
options: dict[str, Any] = {}, |
|
**kw: Any, |
|
) -> Any: |
|
""" |
|
Evaluates an image expression. This uses Python's ``eval()`` function to process |
|
the expression string, and carries the security risks of doing so. It is not |
|
recommended to process expressions without considering this. |
|
:py:meth:`~lambda_eval` is a more secure alternative. |
|
|
|
:py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band |
|
images, use the :py:meth:`~PIL.Image.Image.split` method or |
|
:py:func:`~PIL.Image.merge` function. |
|
|
|
:param expression: A string containing a Python-style expression. |
|
:param options: Values to add to the evaluation context. You |
|
can either use a dictionary, or one or more keyword |
|
arguments. |
|
:return: The evaluated expression. This is usually an image object, but can |
|
also be an integer, a floating point value, or a pixel tuple, |
|
depending on the expression. |
|
""" |
|
|
|
|
|
args: dict[str, Any] = ops.copy() |
|
for k in list(options.keys()) + list(kw.keys()): |
|
if "__" in k or hasattr(builtins, k): |
|
msg = f"'{k}' not allowed" |
|
raise ValueError(msg) |
|
|
|
args.update(options) |
|
args.update(kw) |
|
for k, v in args.items(): |
|
if hasattr(v, "im"): |
|
args[k] = _Operand(v) |
|
|
|
compiled_code = compile(expression, "<string>", "eval") |
|
|
|
def scan(code: CodeType) -> None: |
|
for const in code.co_consts: |
|
if type(const) is type(compiled_code): |
|
scan(const) |
|
|
|
for name in code.co_names: |
|
if name not in args and name != "abs": |
|
msg = f"'{name}' not allowed" |
|
raise ValueError(msg) |
|
|
|
scan(compiled_code) |
|
out = builtins.eval(expression, {"__builtins": {"abs": abs}}, args) |
|
try: |
|
return out.im |
|
except AttributeError: |
|
return out |
|
|
|
|
|
def eval( |
|
expression: str, |
|
_dict: dict[str, Any] = {}, |
|
**kw: Any, |
|
) -> Any: |
|
""" |
|
Evaluates an image expression. |
|
|
|
Deprecated. Use lambda_eval() or unsafe_eval() instead. |
|
|
|
:param expression: A string containing a Python-style expression. |
|
:param _dict: Values to add to the evaluation context. You |
|
can either use a dictionary, or one or more keyword |
|
arguments. |
|
:return: The evaluated expression. This is usually an image object, but can |
|
also be an integer, a floating point value, or a pixel tuple, |
|
depending on the expression. |
|
|
|
.. deprecated:: 10.3.0 |
|
""" |
|
|
|
deprecate( |
|
"ImageMath.eval", |
|
12, |
|
"ImageMath.lambda_eval or ImageMath.unsafe_eval", |
|
) |
|
return unsafe_eval(expression, _dict, **kw) |
|
|