#!/usr/bin/env python | |
# | |
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or | |
# many nodes) can talk to each other via nccl and allocate gpu memory. | |
# | |
# To run first adjust the number of processes and nodes: | |
# | |
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py | |
# | |
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port | |
# | |
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d | |
# | |
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 | |
# | |
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: | |
# | |
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py | |
# | |
# which should tell you what's going on behind the scenes. | |
# | |
# | |
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that | |
# runs on 2 nodes of 4 gpus per node: | |
# | |
# #SBATCH --job-name=test-nodes # name | |
# #SBATCH --nodes=2 # nodes | |
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! | |
# #SBATCH --cpus-per-task=10 # number of cores per tasks | |
# #SBATCH --gres=gpu:4 # number of gpus | |
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) | |
# #SBATCH --output=%x-%j.out # output file name | |
# | |
# GPUS_PER_NODE=4 | |
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) | |
# MASTER_PORT=6000 | |
# | |
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ | |
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ | |
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ | |
# torch-distributed-gpu-test.py' | |
# | |
import fcntl | |
import os | |
import socket | |
import torch | |
import torch.distributed as dist | |
def printflock(*msgs): | |
"""solves multi-process interleaved print problem""" | |
with open(__file__, "r") as fh: | |
fcntl.flock(fh, fcntl.LOCK_EX) | |
try: | |
print(*msgs) | |
finally: | |
fcntl.flock(fh, fcntl.LOCK_UN) | |
local_rank = int(os.environ["LOCAL_RANK"]) | |
torch.cuda.set_device(local_rank) | |
device = torch.device("cuda", local_rank) | |
hostname = socket.gethostname() | |
gpu = f"[{hostname}-{local_rank}]" | |
try: | |
# test distributed | |
dist.init_process_group("nccl") | |
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) | |
dist.barrier() | |
# test cuda is available and can allocate memory | |
torch.cuda.is_available() | |
torch.ones(1).cuda(local_rank) | |
# global rank | |
rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") | |
dist.barrier() | |
if rank == 0: | |
printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") | |
except Exception: | |
printflock(f"{gpu} is broken") | |
raise | |