|
import json |
|
import os |
|
import time |
|
import torch |
|
import gradio as gr |
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "0" |
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" |
|
|
|
|
|
model = None |
|
tokenizer = None |
|
|
|
|
|
def load_model_and_tokenizer(model_name, dtype, kv_bits): |
|
global model, tokenizer |
|
if model is None or tokenizer is None: |
|
print("Loading model and tokenizer...") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
special_tokens = {"pad_token": "<PAD>"} |
|
tokenizer.add_special_tokens(special_tokens) |
|
|
|
config = AutoConfig.from_pretrained(model_name) |
|
if kv_bits != "unquantized": |
|
quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad" |
|
setattr(config, "quantizer_path", quantizer_path) |
|
|
|
if dtype == "bf16": |
|
dtype = torch.bfloat16 |
|
elif dtype == "fp16": |
|
dtype = torch.float16 |
|
elif dtype == "fp32": |
|
dtype = torch.float32 |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto") |
|
|
|
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
tokenizer.padding_side = "left" |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
|
|
return model, tokenizer |
|
|
|
|
|
def format_response(dialog, response): |
|
formatted_dialog = dialog.copy() |
|
formatted_dialog.append({"role": "assistant", "content": response}) |
|
return formatted_dialog |
|
|
|
|
|
def load_questions(prompts_path, num_questions, custom_question): |
|
with open(prompts_path, "r") as file: |
|
dialogs = json.load(file) |
|
|
|
if custom_question and custom_question.strip(): |
|
custom_dialog = [{"role": "user", "content": custom_question}] |
|
dialogs.insert(0, custom_dialog) |
|
|
|
dialogs = dialogs[:num_questions] |
|
return dialogs |
|
|
|
|
|
def infer(model_name, dialogs, num_new_tokens, temperature, dtype, kv_bits): |
|
print("Starting inference...") |
|
model, tokenizer = load_model_and_tokenizer(model_name, dtype, kv_bits) |
|
batch_inputs = [ |
|
tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True) |
|
for dialog in dialogs |
|
] |
|
|
|
responses = [] |
|
start_time = time.time() |
|
|
|
batch_size = 20 |
|
num_dialogs = len(dialogs) |
|
total_time = 0 |
|
total_tokens = 0 |
|
num_batches = (num_dialogs + batch_size - 1) // batch_size |
|
|
|
for batch_idx in range(num_batches): |
|
start_idx = batch_idx * batch_size |
|
end_idx = min(start_idx + batch_size, num_dialogs) |
|
batch = batch_inputs[start_idx:end_idx] |
|
|
|
encoded_inputs = tokenizer(batch, padding=True, truncation=False, return_tensors="pt") |
|
input_ids = encoded_inputs["input_ids"].to(model.device) |
|
attention_mask = encoded_inputs["attention_mask"].to(model.device) |
|
|
|
with torch.no_grad(): |
|
torch.cuda.synchronize() |
|
batch_start_time = time.perf_counter() |
|
|
|
output_tokens = model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_new_tokens=num_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
torch.cuda.synchronize() |
|
batch_end_time = time.perf_counter() |
|
|
|
batch_time = batch_end_time - batch_start_time |
|
total_time += batch_time |
|
total_tokens += output_tokens.numel() |
|
|
|
decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True) |
|
|
|
for i, response in enumerate(decoded_outputs): |
|
original_dialog = dialogs[start_idx + i] |
|
formatted_response = format_response(original_dialog, response) |
|
responses.append(formatted_response) |
|
|
|
elapsed_time = time.time() - start_time |
|
print(f"Inference completed in {elapsed_time:.2f} seconds.") |
|
|
|
results = { |
|
"Responses": responses, |
|
"Time Taken (seconds)": elapsed_time, |
|
"Tokens per Second": total_tokens / total_time if total_time > 0 else 0 |
|
} |
|
|
|
return results |
|
|
|
|
|
def demo(num_new_tokens, temperature, num_questions, custom_question, kv_bits): |
|
print("Loading questions...") |
|
dialogs = load_questions("chats_sys_none.json", num_questions, custom_question) |
|
print(f"{len(dialogs)} questions loaded. Starting inference...") |
|
results = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16", kv_bits) |
|
return results |
|
|
|
|
|
with open("chats_sys_none.json", "r") as file: |
|
json_data = json.load(file) |
|
json_data_str = json.dumps(json_data, indent=2) |
|
|
|
|
|
def show_json(): |
|
return json_data_str |
|
|
|
|
|
interface = gr.Interface( |
|
fn=demo, |
|
inputs=[ |
|
gr.Slider(label="Number of New Tokens", minimum=128, maximum=1024, step=128, value=512), |
|
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4), |
|
gr.Slider(minimum=20, maximum=100, step=1, label="Number of Questions", value=20), |
|
gr.Textbox(label="Custom Question", placeholder="Type your custom question here..."), |
|
|
|
], |
|
outputs=[ |
|
gr.JSON(label="Responses and Time Taken") |
|
], |
|
title="LLM Inference Demo", |
|
description="A demo for running LLM inference using Gradio and Hugging Face.", |
|
live=False |
|
) |
|
|
|
json_interface = gr.Interface( |
|
fn=show_json, |
|
inputs=[], |
|
outputs=[ |
|
gr.HTML("<pre>{}</pre>".format(json_data_str)) |
|
], |
|
live=False |
|
) |
|
|
|
app = gr.Blocks() |
|
|
|
with app: |
|
with gr.Tab("LLM Inference Demo"): |
|
interface.render() |
|
with gr.Tab("Show JSON"): |
|
json_interface.render() |
|
|
|
if __name__ == "__main__": |
|
print("Loading model and tokenizer on startup...") |
|
|
|
load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1") |
|
print("Model and tokenizer loaded. Starting Gradio interface...") |
|
app.launch() |
|
|