Aston-xMAD's picture
update placeholder
5492f4c verified
import json
import os
import time
import random
import torch
import gc
import re
import math
import gradio as gr
import numpy as np
import boto3
import logging
from botocore.exceptions import NoCredentialsError
from collections import defaultdict
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
def download_xmad_file():
s3 = boto3.client('s3',
aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY'))
# Create the .codebooks directory if it doesn't exist
codebooks_dir = '.codebooks'
os.makedirs(codebooks_dir, exist_ok=True)
temp_file_path = os.path.join(codebooks_dir, 'llama-3-8b-instruct_1bit.xmad')
try:
# Download the file to the .codebooks directory
s3.download_file('xmad-quantized-models', 'llama-3-8b-instruct_1bit.xmad', temp_file_path)
print("Download Successful")
# Restrict permissions on the .codebooks directory
os.chmod(codebooks_dir, 0o700)
except NoCredentialsError:
print("Credentials not available")
download_xmad_file()
def b2mb(x):
"""
Convert bytes to megabytes.
"""
return int(x / 2**20)
class TorchTracemalloc:
"""
A context manager that clears GPU memory
and returns GPU peak memory & GPU memory usage.
"""
track_memory_consumption = []
def __enter__(self):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
self.begin = torch.cuda.memory_allocated()
return self
def __exit__(self, *exc):
torch.cuda.synchronize()
self.end = torch.cuda.memory_allocated()
self.peak = torch.cuda.max_memory_allocated()
self.used = b2mb(self.end - self.begin)
self.peaked = b2mb(self.peak - self.begin)
TorchTracemalloc.track_memory_consumption.append(self.peaked)
def clear_gpu_memory():
torch.cuda.empty_cache()
gc.collect()
print("GPU memory cleared.")
def format_response(dialog, response):
question = next((turn['content'] for turn in dialog if turn['role'] == 'user'), 'No question found')
return {"question": question, "answer": response}
# Global variables to store the model and tokenizer
global_model = None
global_tokenizer = None
def load_model_and_tokenizer(model_name, dtype, kv_bits):
global global_model, global_tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
special_tokens = {"pad_token": "<PAD>"}
tokenizer.add_special_tokens(special_tokens)
config = AutoConfig.from_pretrained(model_name)
if kv_bits != "unquantized":
quantizer_path = f".codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad"
setattr(config, "quantizer_path", quantizer_path)
if dtype == "bf16":
dtype = torch.bfloat16
elif dtype == "fp16":
dtype = torch.float16
elif dtype == "fp32":
dtype = torch.float32
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto")
print(f"Quantizer path in model config: {model.config.quantizer_path}")
logging.info(f"Quantizer path in model config: {model.config.quantizer_path}")
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
model.resize_token_embeddings(len(tokenizer))
tokenizer.padding_side = "left"
model.config.pad_token_id = tokenizer.pad_token_id
global_model = model
global_tokenizer = tokenizer
# def load_questions(prompts_path, custom_questions):
# with open(prompts_path, "r") as file:
# dialogs = json.load(file)
# selected_dialogs = []
# if custom_questions:
# for question in custom_questions:
# if question.strip():
# custom_dialog = [{"role": "user", "content": question}]
# selected_dialogs.append(custom_dialog)
# num_questions = max(60 - len(selected_dialogs), 0)
# random.shuffle(dialogs)
# selected_dialogs.extend(dialogs[:num_questions])
# return selected_dialogs
def load_questions(prompts_path, custom_questions):
selected_dialogs = []
if custom_questions:
for question in custom_questions:
if question.strip():
custom_dialog = [{"role": "user", "content": question}]
selected_dialogs.append(custom_dialog)
return selected_dialogs
def markdown_to_plain_text(markdown_text):
# Convert markdown bold (**) to plain text uppercase
markdown_text = re.sub(r'\*\*(.*?)\*\*', r'\1'.upper(), markdown_text)
# Convert markdown italics (*) to plain text
markdown_text = re.sub(r'\*(.*?)\*', r'\1', markdown_text)
# Remove markdown headers (###)
markdown_text = re.sub(r'### ', '', markdown_text)
# Convert markdown lists (- or *)
markdown_text = re.sub(r'^\s*[-*]\s+', '', markdown_text, flags=re.MULTILINE)
# Remove remaining markdown formatting
markdown_text = re.sub(r'[`~>]', '', markdown_text)
return markdown_text
def infer(model_name, dialogs, num_new_tokens, temperature, dtype, kv_bits, progress=gr.Progress()):
print("Starting inference...")
global global_model, global_tokenizer
model = global_model
tokenizer = global_tokenizer
batch_inputs = [
tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True)
for dialog in dialogs
]
responses = []
start_time = time.time()
batch_size = min(100, len(dialogs)) # Adjust batch size based on GPU capacity and number of dialogs
num_dialogs = len(dialogs)
total_time = 0 # Initialize total_time
total_tokens = 0
total_ttft = 0
memory_avg = []
tokens_per_sec_avg = []
time_to_first_token_avg = []
responses_by_batch_size = defaultdict(list)
batch_generation_time = 0
total_generation_time = 0
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
with TorchTracemalloc() as tt:
for i in range(0, num_dialogs, batch_size):
batch = batch_inputs[i : i + batch_size]
try:
encoded_inputs = tokenizer(
batch,
padding=True,
truncation=False,
return_tensors="pt",
)
input_ids = encoded_inputs["input_ids"].to(model.device)
attention_mask = encoded_inputs["attention_mask"].to(model.device)
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
output_tokens = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=num_new_tokens,
num_return_sequences=1,
do_sample=True,
temperature=temperature,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=terminators,
)
torch.cuda.synchronize()
end_time = time.perf_counter()
batch_time = end_time - start_time
total_time += batch_time
batch_generation_time += batch_time
total_generation_time += batch_time
total_tokens += output_tokens.numel()
if i == 0:
total_ttft = batch_time
decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
for j, response in enumerate(decoded_outputs):
original_dialog = dialogs[i + j]
formatted_responses = format_response(original_dialog, response)
responses.append(formatted_responses)
# formatted_responses = "\n\n---\n\n".join([f"**Question**: {res['question']}\n\n**Answer**: {res['answer'][4:]}" for res in responses])
formatted_responses = "\n\n====================\n\n".join([f"**Question**:\t{res['question']}\n\n**Answer**: {res['answer'][4+len(res['question'])+11:]}" for res in responses])
plain_text_responses = markdown_to_plain_text(formatted_responses)
yield plain_text_responses
progress(i, desc="Processing batches")
torch.cuda.empty_cache()
except Exception as e:
print(f"Error processing batch {i//batch_size + 1}: {str(e)}")
continue
elapsed_time = total_time
tokens_per_second = total_tokens / total_time if total_time > 0 else 0
total_memory_consumption = np.sum(TorchTracemalloc.track_memory_consumption)
avg_memory_consumption = total_memory_consumption / num_dialogs
ttft = total_ttft / batch_size if batch_size > 0 else 0
print(f"Inference completed in {elapsed_time:.2f} seconds.")
yield {
"Time Taken (seconds)": elapsed_time,
"Tokens per Second": tokens_per_second,
"Time to First Token (seconds)": ttft,
"Formatted Responses": plain_text_responses,
"Memory Consumption per Question (MB)": avg_memory_consumption,
"Total Memory Consumption (MB)": total_memory_consumption,
"Num Dialogs": num_dialogs
}
# Demo function
def demo(num_new_tokens, temperature, custom_questions_text, kv_bits=1, progress=gr.Progress()):
custom_questions = custom_questions_text.split("\n")
print("Loading questions...")
dialogs = load_questions("chats_sys_none.json", custom_questions)
print(f"{len(dialogs)} questions loaded. Starting inference...")
result_gen = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16", kv_bits, progress=progress)
formatted_responses = ""
num_dialogs = 0
for result in result_gen:
if isinstance(result, str):
formatted_responses = result
yield None, None, None, None, None, None, None, formatted_responses
else:
time_taken = result["Time Taken (seconds)"]
tokens_per_second = result["Tokens per Second"]
ttft = result["Time to First Token (seconds)"]
avg_memory_consumption = result["Memory Consumption per Question (MB)"]
total_memory_consumption = result["Total Memory Consumption (MB)"]
num_dialogs = result["Num Dialogs"]
formatted_responses = result["Formatted Responses"]
yield time_taken, tokens_per_second, ttft, avg_memory_consumption, num_dialogs, total_memory_consumption, formatted_responses
# clear_gpu_memory()
# Load JSON data
with open("chats_sys_none.json", "r") as file:
json_data = json.load(file)
# Load 60 random questions into the input area by default
def load_default_questions():
random.shuffle(json_data)
default_questions = [dialog[0]['content'] for dialog in json_data[:60] if 'content' in dialog[0]]
return "\n".join(default_questions)
# Load default questions on button click
def load_questions_action():
return load_default_questions()
# Gradio interface
css = """
body, html {
height: 100vh;
margin: 0;
}
.gradio-container {
height: 100vh;
}
#main-row {
height: 100%;
display: flex;
}
#control-panel{
height: 100%;
box-sizing: border-box;
display: flex;
flex-direction: column;
overflow: hidden;
flex: 1;
}
#control-panel, #formatted-responses-container {
height: 100%;
box-sizing: border-box;
display: flex;
flex-direction: column;
overflow: hidden;
flex: 1;
}
#control-panel {
flex: 1;
padding-bottom: 1vh; /* Add some padding to the bottom */
}
#custom-questions-text {
height: 30vh; /* Fixed height for custom questions text */
overflow-y: auto;
}
#metrics-panel {
display: flex;
flex-wrap: wrap;
flex-shrink: 0;
height: auto; /* Let the panel size adjust based on its content */
}
#metrics-panel .metric {
flex: 1 1 48%;
min-width: 10vw;
box-sizing: border-box;
}
#buttons-container {
display: flex;
justify-content: space-between;
height: 6vh; /* Fixed height for buttons container */
flex-shrink: 0;
margin-bottom: 1vh; /* Add margin to prevent cutting off */
}
"""
with gr.Blocks(css=css) as app:
with gr.Row(elem_id="main-row", equal_height=True):
with gr.Column(elem_id="control-panel", scale=1):
num_new_tokens = gr.Slider(label="Number of New Tokens", minimum=128, maximum=2048, step=128, value=512)
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4)
custom_questions_text = gr.Textbox(
label="Custom Questions",
placeholder="Type your custom questions here, one per line... \nOr press the \"Load Default Questions\" button to load 60 random default questions. \nAdd a question by adding a new line, or delete lines to decrease the number of questions. \nP.S.: YOU CAN COMPARE OUR SPEED & QUALITY VS. GPT4o by COPY/PASTING ALL QUESTIONS HERE INTO CHATGPT",
autoscroll=False,
container=False,
lines=5,
elem_id="custom-questions-text"
)
with gr.Row(elem_id="metrics-panel"):
time_taken = gr.Number(label="Time Taken (seconds)", interactive=False, elem_classes=["metric"])
tokens_per_second = gr.Number(label="Tokens per Second", interactive=False, elem_classes=["metric"])
ttft = gr.Number(label="Time to First Token (seconds)", interactive=False, elem_classes=["metric"])
total_memory_consumption = gr.Number(label="Memory Consumption (MB)", interactive=False, elem_classes=["metric"])
num_dialogs = gr.Number(label="Dialogs Processed", interactive=False, elem_classes=["metric"])
avg_memory_consumption = gr.Number(label="Mem. Consumption per Question (MB)", interactive=False, elem_classes=["metric"])
with gr.Row(elem_id="buttons-container"):
load_questions_btn = gr.Button("Load Default Questions")
demo_btn = gr.Button("Run Inference", elem_id="run-inference-btn", variant="primary")
formatted_responses = gr.Textbox(
label="Formatted Responses",
elem_id="formatted-responses",
value="No responses yet. Run the inference to see results.",
lines=37,
container=False,
autoscroll=False,
show_copy_button=True
)
load_questions_btn.click(fn=load_questions_action, inputs=[], outputs=custom_questions_text)
demo_btn.click(demo, inputs=[num_new_tokens, temperature, custom_questions_text], outputs=[time_taken, tokens_per_second, ttft, avg_memory_consumption, num_dialogs, total_memory_consumption, formatted_responses])
if __name__ == "__main__":
print("Loading model and tokenizer on startup...")
load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1")
print("Model and tokenizer loaded. Starting Gradio interface...")
username = os.getenv("AUTH_USERNAME")
password = os.getenv("AUTH_PASSWORD")
app.launch(auth=(username, password))