File size: 10,770 Bytes
9382e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import json
import math
import os
import time
from argparse import ArgumentParser
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
# ! CHECK: if expandable segments can improve memory here
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
class TorchTracemalloc:
track_memory_consumption = []
def __enter__(self):
self.begin = torch.cuda.memory_allocated()
torch.cuda.reset_max_memory_allocated()
return self
def __exit__(self, *exc):
peak = torch.cuda.max_memory_allocated()
peaked = (peak - self.begin) // 1024**2
TorchTracemalloc.track_memory_consumption.append(peaked)
def save_bar_chart(title, x, y, ylabel, xlabel, output_path):
try:
plt.style.use("ggplot")
width = 0.4
xs = np.arange(len(x))
plt.figure(figsize=(10, 6))
plt.bar(xs, height=y, width=width, color="skyblue")
plt.title(title)
plt.xticks(xs, x)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.savefig(output_path)
except Exception as e:
print(f"Error saving chart {title}: {str(e)}")
finally:
plt.close()
def format_response(dialog, response):
formatted_dialog = dialog.copy()
formatted_dialog.append({"role": "assistant", "content": response})
return formatted_dialog
parser = ArgumentParser("chat_with_llama")
# parser.add_argument("--llama", type=int, default=3, choices=[2, 3])
parser.add_argument(
"--llama", type=str, default="3-instruct", choices=["2", "3-instruct"]
)
parser.add_argument("--prompts_path", type=str, default="chats_sys_none.json")
# parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument("--model_size", type=int, default=8, choices=[7, 8, 13])
parser.add_argument("--num_new_tokens", type=int, default=512)
parser.add_argument(
"--temperature", type=float, default=0.4, help="Temperature for sampling"
)
parser.add_argument("--window_length", type=int, default=32)
parser.add_argument("--kv_bits", type=int, default=1)
parser.add_argument("--output_path", type=str, default="./output")
parser.add_argument(
"--dtype", type=str, default="fp16", choices=["fp16", "fp32", "bf16"]
)
args = parser.parse_args()
bits = args.kv_bits
try:
if args.llama == 2:
model_name = "NousResearch/Llama-2-7b-hf"
else:
model_name = "NousResearch/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Add pad token to the tokenizer for batched inference
special_tokens = {"pad_token": "<PAD>"}
tokenizer.add_special_tokens(special_tokens)
config = AutoConfig.from_pretrained(model_name)
if isinstance(bits, int):
if args.llama == 2:
setattr(
config,
"quantizer_path",
f"codebooks/llama-2-7b_{bits}bit.xmad",
)
else:
setattr(
config,
"quantizer_path",
f"codebooks/llama-3-8b_{bits}bit.xmad",
)
if isinstance(args.window_length, int):
setattr(config, "window_length", args.window_length)
if args.dtype == "bf16":
dtype = torch.bfloat16
elif args.dtype == "fp16":
dtype = torch.float16
elif args.dtype == "fp32":
dtype = torch.float32
# ! CHECK: if using accelerate's "auto" device map can save more on memory
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, torch_dtype=dtype, device_map="auto"
)
# TODO: Figure out why this is kinda slow vs. using accelerate...?
# model = AutoModelForCausalLM.from_pretrained(
# model_name, config=config, torch_dtype=dtype, device_map="cuda:0"
# )
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
print(
"WARNING: Resizing the embedding matrix to match the tokenizer vocab size."
)
model.resize_token_embeddings(len(tokenizer))
# Set padding side and pad token ID
tokenizer.padding_side = "left"
model.config.pad_token_id = tokenizer.pad_token_id
with open(args.prompts_path, "r") as file:
dialogs = json.load(file)
num_dialogs = len(dialogs)
print(f"Loaded {num_dialogs} dialogues...")
# ! CHECK: if add_generation_prompt=True improves answer generation
batch_inputs = [
tokenizer.apply_chat_template(
dialog, tokenize=False, add_generation_prompt=True
)
for dialog in dialogs
]
# TODO: Add terminators to model.generate()
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
# batch_sizes = [
# 5,
# 10,
# 20,
# 30,
# 40,
# 50,
# 60,
# 70,
# 80,
# 90,
# 100,
# ] # working range on t8
batch_sizes = [
30
]
memory_avg = []
tokens_per_sec_avg = []
time_to_first_token_avg = []
responses_by_batch_size = defaultdict(list)
os.makedirs(args.output_path, exist_ok=True)
for batch_size in batch_sizes:
print(f"\nProcessing with batch size: {batch_size}")
# actual_batch_size = min(batch_size, num_dialogs)
actual_batch_size = 30
total_time = 0
total_tokens = 0
total_ttft = 0
num_batches = math.ceil(num_dialogs / actual_batch_size)
# ! CHECK: if dynamic padding is better vs. pre-allocated tensors; no need to truncate b/c left-padding enabled
with TorchTracemalloc() as tt:
for i in range(0, num_dialogs, actual_batch_size):
batch = batch_inputs[i : i + actual_batch_size]
try:
encoded_inputs = tokenizer(
batch,
padding=True,
truncation=False,
return_tensors="pt",
)
input_ids = encoded_inputs["input_ids"].to(model.device)
attention_mask = encoded_inputs["attention_mask"].to(
model.device
)
torch.cuda.synchronize()
start_time = time.perf_counter()
# Generate responses
with torch.no_grad():
output_tokens = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=args.num_new_tokens,
num_return_sequences=1,
do_sample=True,
temperature=args.temperature,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=terminators,
)
torch.cuda.synchronize()
end_time = time.perf_counter()
batch_time = end_time - start_time
total_time += batch_time
total_tokens += output_tokens.numel()
if i == 0:
total_ttft = batch_time
# Decode the generated responses
decoded_outputs = tokenizer.batch_decode(
output_tokens, skip_special_tokens=True
)
# Store the responses
for j, response in enumerate(decoded_outputs):
original_dialog = dialogs[i + j]
formatted_response = format_response(
original_dialog, response
)
responses_by_batch_size[batch_size].append(
formatted_response
)
# ! CHECK: if Clearing CUDA cache after each batch works, but this can also cause fragmentation errors
torch.cuda.empty_cache()
except Exception as e:
print(
f"Error processing batch {i//batch_size + 1}: {str(e)}"
)
continue
avg_memory = np.mean(TorchTracemalloc.track_memory_consumption)
memory_avg.append(avg_memory)
tokens_per_sec = total_tokens / total_time if total_time > 0 else 0
tokens_per_sec_avg.append(tokens_per_sec)
# Use actual_batch_size in calculations
time_to_first_token = (
total_ttft / actual_batch_size if actual_batch_size > 0 else 0
)
time_to_first_token_avg.append(time_to_first_token)
print(f"Actual Batch Size Used: {actual_batch_size}")
print(f"GPU Memory Consumption (MiB): {avg_memory:.2f} MiB")
print(f"Tokens per Second: {tokens_per_sec:.2f}")
print(f"TTFT (seconds): {time_to_first_token:.4f} seconds")
for batch_size, responses in responses_by_batch_size.items():
output_file = os.path.join(
args.output_path, f"batch_{batch_size}_responses.json"
)
with open(output_file, "w") as f:
json.dump(responses, f, indent=2)
save_bar_chart(
title="GPU Memory Consumption as a Function of Batch Size",
x=batch_sizes,
y=memory_avg,
xlabel="Batch Size",
ylabel="GPU Memory Consumption (MiB)",
output_path=f"{args.output_path}/memory_usage.png",
)
save_bar_chart(
title="Number of Tokens per Second as a Function of Batch Size",
x=batch_sizes,
y=tokens_per_sec_avg,
xlabel="Batch Size",
ylabel="Tokens per Second",
output_path=f"{args.output_path}/tokens_per_second.png",
)
save_bar_chart(
title="Time to First Token (TTFT) as a Function of Batch Size",
x=batch_sizes,
y=time_to_first_token_avg,
xlabel="Batch Size",
ylabel="TTFT (seconds)",
output_path=f"{args.output_path}/time_to_first_token.png",
)
print("\nBenchmarking Results:")
print(f"Batch Sizes: {batch_sizes}")
print(f"GPU Memory Consumption (MiB): {memory_avg}")
print(f"Tokens per Second: {tokens_per_sec_avg}")
print(f"Time to First Token (seconds): {time_to_first_token_avg}")
print(
f"\nModel size: {args.model_size}, Max New Tokens: {args.num_new_tokens}, KV bits: {bits}"
)
print(f"Results and responses saved in: {args.output_path}")
except Exception as e:
print(f"An error occurred during script execution: {str(e)}")
|