File size: 49,123 Bytes
9382e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Testen
Werfen wir einen Blick darauf, wie 🤗 Transformers-Modelle getestet werden und wie Sie neue Tests schreiben und die vorhandenen verbessern können.
Es gibt 2 Testsuiten im Repository:
1. `tests` -- Tests für die allgemeine API
2. `examples` -- Tests hauptsächlich für verschiedene Anwendungen, die nicht Teil der API sind
## Wie Transformatoren getestet werden
1. Sobald ein PR eingereicht wurde, wird er mit 9 CircleCi Jobs getestet. Jeder neue Commit zu diesem PR wird erneut getestet. Diese Aufträge
sind in dieser [Konfigurationsdatei](https://github.com/huggingface/transformers/tree/main/.circleci/config.yml) definiert, so dass Sie bei Bedarf die gleiche Umgebung auf Ihrem Rechner reproduzieren können.
Umgebung auf Ihrem Rechner reproduzieren können.
Diese CI-Jobs führen keine `@slow`-Tests durch.
2. Es gibt 3 Jobs, die von [github actions](https://github.com/huggingface/transformers/actions) ausgeführt werden:
- [torch hub integration](https://github.com/huggingface/transformers/tree/main/.github/workflows/github-torch-hub.yml): prüft, ob die torch hub
Integration funktioniert.
- [self-hosted (push)](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-push.yml): führt schnelle Tests auf der GPU nur bei Commits auf
`main`. Es wird nur ausgeführt, wenn ein Commit auf `main` den Code in einem der folgenden Ordner aktualisiert hat: `src`,
`tests`, `.github` (um zu verhindern, dass er auf hinzugefügten Modellkarten, Notebooks usw. läuft)
- [self-hosted runner](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-scheduled.yml): führt normale und langsame Tests auf GPU in
`tests` und `examples`:
```bash
RUN_SLOW=1 pytest tests/
RUN_SLOW=1 pytest examples/
```
Die Ergebnisse können Sie [hier](https://github.com/huggingface/transformers/actions) sehen.
## Tests ausführen
### Auswahl der auszuführenden Tests
In diesem Dokument wird ausführlich erläutert, wie Tests ausgeführt werden können. Wenn Sie nach der Lektüre noch mehr Details benötigen
finden Sie diese [hier](https://docs.pytest.org/en/latest/usage.html).
Hier sind einige der nützlichsten Möglichkeiten, Tests auszuführen.
Alle ausführen:
```console
pytest
```
oder:
```bash
make test
```
Beachten Sie, dass Letzteres wie folgt definiert ist:
```bash
python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
was pytest anweist:
- so viele Testprozesse laufen zu lassen, wie es CPU-Kerne gibt (was zu viele sein könnten, wenn Sie nicht über eine Menge RAM verfügen!)
- sicherzustellen, dass alle Tests aus derselben Datei von demselben Testprozess ausgeführt werden
- Erfassen Sie keine Ausgaben
- im ausführlichen Modus laufen lassen
### Abrufen der Liste aller Tests
Alle Tests der Testsuite:
```bash
pytest --collect-only -q
```
Alle Tests einer bestimmten Testdatei:
```bash
pytest tests/test_optimization.py --collect-only -q
```
### Führen Sie ein bestimmtes Testmodul aus
Um ein einzelnes Testmodul auszuführen:
```bash
pytest tests/utils/test_logging.py
```
### Spezifische Tests ausführen
Da unittest in den meisten Tests verwendet wird, müssen Sie, um bestimmte Untertests auszuführen, den Namen der unittest
Klasse, die diese Tests enthält. Er könnte zum Beispiel lauten:
```bash
pytest tests/test_optimization.py::OptimizationTest::test_adam_w
```
Hier:
- `tests/test_optimization.py` - die Datei mit den Tests
- `OptimizationTest` - der Name der Klasse
- `test_adam_w` - der Name der spezifischen Testfunktion
Wenn die Datei mehrere Klassen enthält, können Sie auswählen, dass nur die Tests einer bestimmten Klasse ausgeführt werden sollen. Zum Beispiel:
```bash
pytest tests/test_optimization.py::OptimizationTest
```
führt alle Tests innerhalb dieser Klasse aus.
Wie bereits erwähnt, können Sie sehen, welche Tests in der Klasse `OptimizationTest` enthalten sind, indem Sie sie ausführen:
```bash
pytest tests/test_optimization.py::OptimizationTest --collect-only -q
```
Sie können Tests mit Hilfe von Schlüsselwortausdrücken ausführen.
Um nur Tests auszuführen, deren Name `adam` enthält:
```bash
pytest -k adam tests/test_optimization.py
```
Die logischen `und` und `oder` können verwendet werden, um anzugeben, ob alle Schlüsselwörter übereinstimmen sollen oder nur eines. `nicht` kann verwendet werden, um
negieren.
Um alle Tests auszuführen, außer denen, deren Name `adam` enthält:
```bash
pytest -k "not adam" tests/test_optimization.py
```
Und Sie können die beiden Muster in einem kombinieren:
```bash
pytest -k "ada and not adam" tests/test_optimization.py
```
Um zum Beispiel sowohl `test_adafactor` als auch `test_adam_w` auszuführen, können Sie verwenden:
```bash
pytest -k "test_adam_w or test_adam_w" tests/test_optimization.py
```
Beachten Sie, dass wir hier `oder` verwenden, da wir wollen, dass eines der Schlüsselwörter übereinstimmt, um beide einzuschließen.
Wenn Sie nur Tests einschließen möchten, die beide Muster enthalten, müssen Sie `und` verwenden:
```bash
pytest -k "test and ada" tests/test_optimization.py
```
### Führen Sie `accelerate` Tests durch
Manchmal müssen Sie `accelerate` Tests für Ihre Modelle ausführen. Dazu fügen Sie einfach `-m accelerate_tests` zu Ihrem Befehl hinzu, wenn Sie diese Tests bei einem `OPT`-Lauf ausführen möchten:
```bash
RUN_SLOW=1 pytest -m accelerate_tests tests/models/opt/test_modeling_opt.py
```
### Dokumentationstests ausführen
Um zu testen, ob die Dokumentationsbeispiele korrekt sind, sollten Sie überprüfen, ob die `doctests` erfolgreich sind.
Lassen Sie uns als Beispiel den docstring von [WhisperModel.forward](https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py#L1017-L1035) verwenden:
```python
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import WhisperModel, WhisperFeatureExtractor
>>> from datasets import load_dataset
>>> model = WhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
```
Führen Sie einfach die folgende Zeile aus, um automatisch jedes docstring-Beispiel in der gewünschten Datei zu testen:
```bash
pytest --doctest-modules <path_to_file_or_dir>
```
Wenn die Datei eine Markdown-Erweiterung hat, sollten Sie das Argument `--doctest-glob="*.md"` hinzufügen.
### Nur geänderte Tests ausführen
Mit [pytest-picked](https://github.com/anapaulagomes/pytest-picked) können Sie die Tests ausführen, die sich auf die unstaged Dateien oder den aktuellen Zweig (gemäß Git) beziehen. Auf diese Weise können Sie schnell testen, ob Ihre Änderungen nichts kaputt gemacht haben.
nichts kaputt gemacht haben, da die Tests für Dateien, die Sie nicht verändert haben, nicht ausgeführt werden.
```bash
pip install pytest-picked
```
```bash
pytest --picked
```
Alle Tests werden von Dateien und Ordnern ausgeführt, die geändert, aber noch nicht übergeben wurden.
### Fehlgeschlagene Tests bei Änderung der Quelle automatisch wiederholen
[pytest-xdist](https://github.com/pytest-dev/pytest-xdist) bietet eine sehr nützliche Funktion zur Erkennung aller fehlgeschlagenen
Tests zu erkennen und dann darauf zu warten, dass Sie Dateien ändern, um die fehlgeschlagenen Tests so lange zu wiederholen, bis sie erfolgreich sind, während Sie die
sie reparieren. So müssen Sie pytest nicht erneut starten, nachdem Sie die Korrektur vorgenommen haben. Dies wird so lange wiederholt, bis alle Tests bestanden sind.
Danach wird erneut ein vollständiger Durchlauf durchgeführt.
```bash
pip install pytest-xdist
```
So rufen Sie den Modus auf: `pytest -f` oder `pytest --looponfail`
Datei-Änderungen werden erkannt, indem die Wurzelverzeichnisse von `looponfailroots` und alle ihre Inhalte (rekursiv) untersucht werden.
Wenn die Vorgabe für diesen Wert für Sie nicht funktioniert, können Sie ihn in Ihrem Projekt ändern, indem Sie eine Konfigurations
Option in der Datei `setup.cfg` ändern:
```ini
[tool:pytest]
looponfailroots = transformers tests
```
oder die Dateien `pytest.ini`/`tox.ini``:
```ini
[pytest]
looponfailroots = transformers tests
```
Dies würde dazu führen, dass nur nach Dateiänderungen in den jeweiligen Verzeichnissen gesucht wird, die relativ zum Verzeichnis der ini-Datei angegeben sind.
Verzeichnis.
[pytest-watch](https://github.com/joeyespo/pytest-watch) ist eine alternative Implementierung dieser Funktionalität.
### Überspringen eines Testmoduls
Wenn Sie alle Testmodule ausführen möchten, mit Ausnahme einiger weniger, können Sie diese ausschließen, indem Sie eine explizite Liste der auszuführenden Tests angeben. Für
Beispiel: Um alle Tests außer `test_modeling_*.py` auszuführen:
```bash
pytest *ls -1 tests/*py | grep -v test_modeling*
```
### Status leeren
CI-Builds und wenn Isolation wichtig ist (gegen Geschwindigkeit), sollte der Cache geleert werden:
```bash
pytest --cache-clear tests
```
### Tests parallel ausführen
Wie bereits erwähnt, führt `make test` über das Plugin `pytest-xdist` Tests parallel aus (Argument `-n X`, z.B. `-n 2`
um 2 Jobs parallel laufen zu lassen).
Mit der Option `--dist=` von `pytest-xdist` können Sie steuern, wie die Tests gruppiert werden. Mit `--dist=loadfile` werden die
Tests, die sich in einer Datei befinden, in denselben Prozess.
Da die Reihenfolge der ausgeführten Tests unterschiedlich und nicht vorhersehbar ist, kann die Ausführung der Testsuite mit `pytest-xdist`
zu Fehlern führt (was bedeutet, dass wir einige unentdeckte gekoppelte Tests haben), verwenden Sie [pytest-replay](https://github.com/ESSS/pytest-replay), um die Tests in der gleichen Reihenfolge abzuspielen, was dabei helfen sollte
diese fehlgeschlagene Sequenz auf ein Minimum zu reduzieren.
### Testreihenfolge und Wiederholung
Es ist gut, die Tests mehrmals zu wiederholen, nacheinander, zufällig oder in Gruppen, um mögliche
Abhängigkeiten und zustandsbezogene Fehler zu erkennen (Abriss). Und die einfache, mehrfache Wiederholung ist einfach gut, um
einige Probleme zu erkennen, die durch die Zufälligkeit von DL aufgedeckt werden.
#### Wiederholungstests
- [pytest-flakefinder](https://github.com/dropbox/pytest-flakefinder):
```bash
pip install pytest-flakefinder
```
Und führen Sie dann jeden Test mehrmals durch (standardmäßig 50):
```bash
pytest --flake-finder --flake-runs=5 tests/test_failing_test.py
```
<Tip>
Dieses Plugin funktioniert nicht mit dem `-n` Flag von `pytest-xdist`.
</Tip>
<Tip>
Es gibt noch ein anderes Plugin `pytest-repeat`, aber es funktioniert nicht mit `unittest`.
</Tip>
#### Run tests in a random order
```bash
pip install pytest-random-order
```
Wichtig: Das Vorhandensein von `pytest-random-order` sorgt für eine automatische Zufallsanordnung der Tests, es sind keine Konfigurationsänderungen oder
Befehlszeilenoptionen sind nicht erforderlich.
Wie bereits erläutert, ermöglicht dies die Erkennung von gekoppelten Tests - bei denen der Zustand eines Tests den Zustand eines anderen beeinflusst. Wenn
`pytest-random-order` installiert ist, gibt es den Zufallswert aus, der für diese Sitzung verwendet wurde, z.B:
```bash
pytest tests
[...]
Using --random-order-bucket=module
Using --random-order-seed=573663
```
Wenn eine bestimmte Sequenz fehlschlägt, können Sie sie reproduzieren, indem Sie genau diesen Seed hinzufügen, z.B:
```bash
pytest --random-order-seed=573663
[...]
Using --random-order-bucket=module
Using --random-order-seed=573663
```
Es wird nur dann die exakte Reihenfolge reproduzieren, wenn Sie genau dieselbe Liste von Tests (oder gar keine Liste) verwenden. Sobald Sie beginnen, die Liste
die Liste manuell einzugrenzen, können Sie sich nicht mehr auf den Seed verlassen, sondern müssen die Tests manuell in der genauen Reihenfolge auflisten
auflisten und pytest anweisen, sie nicht zu randomisieren, indem Sie `--random-order-bucket=none` verwenden, z.B.:
```bash
pytest --random-order-bucket=none tests/test_a.py tests/test_c.py tests/test_b.py
```
So deaktivieren Sie das Shuffling für alle Tests:
```bash
pytest --random-order-bucket=none
```
Standardmäßig ist `--random-order-bucket=module` impliziert, wodurch die Dateien auf den Modulebenen gemischt werden. Es kann auch
auf den Ebenen `class`, `package`, `global` und `none` mischen. Die vollständigen Details entnehmen Sie bitte der
[Dokumentation](https://github.com/jbasko/pytest-random-order).
Eine weitere Alternative zur Randomisierung ist: [`pytest-random`](https://github.com/pytest-dev/pytest-randomly). Dieses
Modul hat eine sehr ähnliche Funktionalität/Schnittstelle, aber es hat nicht die Eimermodi, die in
`pytest-random-order` zur Verfügung. Es hat das gleiche Problem, dass es sich nach der Installation aufdrängt.
### Variationen von Aussehen und Bedienung
#### pytest-zucker
[pytest-sugar](https://github.com/Frozenball/pytest-sugar) ist ein Plugin, das das Erscheinungsbild verbessert, eine
Fortschrittsbalken hinzufügt und Tests, die fehlschlagen, sowie die Bestätigung sofort anzeigt. Es wird bei der Installation automatisch aktiviert.
```bash
pip install pytest-sugar
```
Um Tests ohne sie durchzuführen, führen Sie aus:
```bash
pytest -p no:sugar
```
oder deinstallieren Sie es.
#### Melden Sie den Namen jedes Subtests und seinen Fortschritt
Für einen einzelnen oder eine Gruppe von Tests über `pytest` (nach `pip install pytest-pspec`):
```bash
pytest --pspec tests/test_optimization.py
```
#### Zeigt fehlgeschlagene Tests sofort an
[pytest-instafail](https://github.com/pytest-dev/pytest-instafail) zeigt Fehlschläge und Fehler sofort an, anstatt
bis zum Ende der Testsitzung zu warten.
```bash
pip install pytest-instafail
```
```bash
pytest --instafail
```
### Zu GPU oder nicht zu GPU
Bei einem GPU-aktivierten Setup fügen Sie zum Testen im reinen CPU-Modus `CUDA_VISIBLE_DEVICES=""` hinzu:
```bash
CUDA_VISIBLE_DEVICES="" pytest tests/utils/test_logging.py
```
oder wenn Sie mehrere Grafikprozessoren haben, können Sie angeben, welcher von `pytest` verwendet werden soll. Wenn Sie zum Beispiel nur den
zweiten Grafikkarte zu verwenden, wenn Sie die Grafikkarten `0` und `1` haben, können Sie folgendes ausführen:
```bash
CUDA_VISIBLE_DEVICES="1" pytest tests/utils/test_logging.py
```
Dies ist praktisch, wenn Sie verschiedene Aufgaben auf verschiedenen GPUs ausführen möchten.
Einige Tests müssen nur auf der CPU ausgeführt werden, andere entweder auf der CPU, der GPU oder der TPU und wieder andere auf mehreren GPUs. Die folgenden skip
Dekorateure werden verwendet, um die Anforderungen von Tests in Bezug auf CPU/GPU/TPU festzulegen:
- `require_torch` - dieser Test wird nur unter Torch ausgeführt
- `require_torch_gpu` - wie `require_torch` plus erfordert mindestens 1 GPU
- `require_torch_multi_gpu` - wie `require_torch` und zusätzlich mindestens 2 GPUs erforderlich
- `require_torch_non_multi_gpu` - wie `require_torch` plus benötigt 0 oder 1 GPUs
- `require_torch_up_to_2_gpus` - wie `require_torch` plus erfordert 0 oder 1 oder 2 GPUs
- `require_torch_xla` - wie `require_torch` plus erfordert mindestens 1 TPU
Lassen Sie uns die GPU-Anforderungen in der folgenden Tabelle darstellen:
| n gpus | decorator |
|--------|--------------------------------|
| `>= 0` | `@require_torch` |
| `>= 1` | `@require_torch_gpu` |
| `>= 2` | `@require_torch_multi_gpu` |
| `< 2` | `@require_torch_non_multi_gpu` |
| `< 3` | `@require_torch_up_to_2_gpus` |
Hier ist zum Beispiel ein Test, der nur ausgeführt werden muss, wenn 2 oder mehr GPUs verfügbar sind und pytorch installiert ist:
```python no-style
@require_torch_multi_gpu
def test_example_with_multi_gpu():
```
Wenn ein Test `tensorflow` benötigt, verwenden Sie den Dekorator `require_tf`. Zum Beispiel:
```python no-style
@require_tf
def test_tf_thing_with_tensorflow():
```
Diese Dekors können gestapelt werden. Wenn zum Beispiel ein Test langsam ist und mindestens eine GPU unter pytorch benötigt, können Sie
wie Sie ihn einrichten können:
```python no-style
@require_torch_gpu
@slow
def test_example_slow_on_gpu():
```
Einige Dekoratoren wie `@parametrized` schreiben Testnamen um, daher müssen `@require_*`-Sprungdekoratoren als letztes aufgeführt werden.
zuletzt aufgeführt werden, damit sie korrekt funktionieren. Hier ist ein Beispiel für die korrekte Verwendung:
```python no-style
@parameterized.expand(...)
@require_torch_multi_gpu
def test_integration_foo():
```
Dieses Problem mit der Reihenfolge gibt es bei `@pytest.mark.parametrize` nicht, Sie können es an den Anfang oder an den Schluss setzen und es wird trotzdem funktionieren.
funktionieren. Aber es funktioniert nur bei Nicht-Unittests.
Innerhalb von Tests:
- Wie viele GPUs sind verfügbar:
```python
from transformers.testing_utils import get_gpu_count
n_gpu = get_gpu_count() # works with torch and tf
```
### Testen mit einem bestimmten PyTorch-Backend oder Gerät
Um die Testsuite auf einem bestimmten Torch-Gerät auszuführen, fügen Sie `TRANSFORMERS_TEST_DEVICE="$Gerät"` hinzu, wobei `$Gerät` das Ziel-Backend ist. Zum Beispiel, um nur auf der CPU zu testen:
```bash
TRANSFORMERS_TEST_DEVICE="cpu" pytest tests/utils/test_logging.py
```
Diese Variable ist nützlich, um benutzerdefinierte oder weniger verbreitete PyTorch-Backends wie `mps` zu testen. Sie kann auch verwendet werden, um den gleichen Effekt wie `CUDA_VISIBLE_DEVICES` zu erzielen, indem Sie bestimmte GPUs anvisieren oder im reinen CPU-Modus testen.
Bestimmte Geräte erfordern einen zusätzlichen Import, nachdem Sie `torch` zum ersten Mal importiert haben. Dies kann über die Umgebungsvariable `TRANSFORMERS_TEST_BACKEND` festgelegt werden:
```bash
TRANSFORMERS_TEST_BACKEND="torch_npu" pytest tests/utils/test_logging.py
```
### Verteiltes Training
`pytest` kann nicht direkt mit verteiltem Training umgehen. Wenn dies versucht wird, tun die Unterprozesse nicht das Richtige
und denken am Ende, sie seien `pytest` und beginnen, die Testsuite in Schleifen auszuführen. Es funktioniert jedoch, wenn man
einen normalen Prozess erzeugt, der dann mehrere Worker erzeugt und die IO-Pipes verwaltet.
Hier sind einige Tests, die dies verwenden:
- [test_trainer_distributed.py](https://github.com/huggingface/transformers/tree/main/tests/trainer/test_trainer_distributed.py)
- [test_deepspeed.py](https://github.com/huggingface/transformers/tree/main/tests/deepspeed/test_deepspeed.py)
Um direkt mit der Ausführung zu beginnen, suchen Sie in diesen Tests nach dem Aufruf `execute_subprocess_async`.
Sie benötigen mindestens 2 GPUs, um diese Tests in Aktion zu sehen:
```bash
CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/test_trainer_distributed.py
```
### Erfassung von Ausgaben
Während der Testausführung werden alle Ausgaben, die an `stdout` und `stderr` gesendet werden, aufgezeichnet. Wenn ein Test oder eine Setup-Methode fehlschlägt, wird die
wird die entsprechende aufgezeichnete Ausgabe in der Regel zusammen mit dem Fehler-Traceback angezeigt.
Um die Aufzeichnung von Ausgaben zu deaktivieren und `stdout` und `stderr` normal zu erhalten, verwenden Sie `-s` oder `--capture=no`:
```bash
pytest -s tests/utils/test_logging.py
```
So senden Sie Testergebnisse an die JUnit-Formatausgabe:
```bash
py.test tests --junitxml=result.xml
```
### Farbsteuerung
Keine Farbe zu haben (z.B. gelb auf weißem Hintergrund ist nicht lesbar):
```bash
pytest --color=no tests/utils/test_logging.py
```
### Testbericht an den Online-Dienst pastebin senden
Erstellen Sie eine URL für jeden Testfehler:
```bash
pytest --pastebin=failed tests/utils/test_logging.py
```
Dadurch werden Informationen über den Testlauf an einen entfernten Paste-Dienst übermittelt und eine URL für jeden Fehlschlag bereitgestellt. Sie können die
Tests wie gewohnt auswählen oder z.B. -x hinzufügen, wenn Sie nur einen bestimmten Fehler senden möchten.
Erstellen einer URL für ein ganzes Testsitzungsprotokoll:
```bash
pytest --pastebin=all tests/utils/test_logging.py
```
## Tests schreiben
🤗 Die Tests von Transformers basieren auf `unittest`, werden aber von `pytest` ausgeführt, so dass die meiste Zeit Funktionen aus beiden Systemen
verwendet werden können.
Sie können [hier](https://docs.pytest.org/en/stable/unittest.html) nachlesen, welche Funktionen unterstützt werden, aber das Wichtigste ist
Wichtig ist, dass die meisten `pytest`-Fixtures nicht funktionieren. Auch die Parametrisierung nicht, aber wir verwenden das Modul
`parametrisiert`, das auf ähnliche Weise funktioniert.
### Parametrisierung
Oft besteht die Notwendigkeit, denselben Test mehrmals auszuführen, aber mit unterschiedlichen Argumenten. Das könnte innerhalb des Tests geschehen
des Tests gemacht werden, aber dann gibt es keine Möglichkeit, den Test mit nur einem Satz von Argumenten auszuführen.
```python
# test_this1.py
import unittest
from parameterized import parameterized
class TestMathUnitTest(unittest.TestCase):
@parameterized.expand(
[
("negative", -1.5, -2.0),
("integer", 1, 1.0),
("large fraction", 1.6, 1),
]
)
def test_floor(self, name, input, expected):
assert_equal(math.floor(input), expected)
```
Nun wird dieser Test standardmäßig 3 Mal ausgeführt, wobei jedes Mal die letzten 3 Argumente von `test_floor` den entsprechenden Argumenten in der Parameterliste zugeordnet werden.
die entsprechenden Argumente in der Parameterliste.
Sie können auch nur die Parameter `negativ` und `ganzzahlig` mit ausführen:
```bash
pytest -k "negative and integer" tests/test_mytest.py
```
oder alle Untertests außer `negativ`, mit:
```bash
pytest -k "not negative" tests/test_mytest.py
```
Neben der Verwendung des gerade erwähnten Filters `-k` können Sie auch den genauen Namen jedes Untertests herausfinden und jeden
oder alle unter Verwendung ihrer genauen Namen ausführen.
```bash
pytest test_this1.py --collect-only -q
```
und es wird aufgelistet:
```bash
test_this1.py::TestMathUnitTest::test_floor_0_negative
test_this1.py::TestMathUnitTest::test_floor_1_integer
test_this1.py::TestMathUnitTest::test_floor_2_large_fraction
```
Jetzt können Sie also nur 2 spezifische Untertests durchführen:
```bash
pytest test_this1.py::TestMathUnitTest::test_floor_0_negative test_this1.py::TestMathUnitTest::test_floor_1_integer
```
Das Modul [parametrisiert](https://pypi.org/project/parameterized/), das sich bereits in den Entwickler-Abhängigkeiten befindet
von `transformers` befindet, funktioniert sowohl für `unittests` als auch für `pytest` Tests.
Wenn es sich bei dem Test jedoch nicht um einen `Unittest` handelt, können Sie `pytest.mark.parametrize` verwenden (oder Sie können sehen, dass es in
einigen bestehenden Tests verwendet wird, meist unter `Beispiele`).
Hier ist das gleiche Beispiel, diesmal unter Verwendung der `parametrize`-Markierung von `pytest`:
```python
# test_this2.py
import pytest
@pytest.mark.parametrize(
"name, input, expected",
[
("negative", -1.5, -2.0),
("integer", 1, 1.0),
("large fraction", 1.6, 1),
],
)
def test_floor(name, input, expected):
assert_equal(math.floor(input), expected)
```
Genau wie bei `parametrisiert` können Sie mit `pytest.mark.parametrize` genau steuern, welche Subtests ausgeführt werden
ausgeführt werden, wenn der Filter `-k` nicht ausreicht. Allerdings erzeugt diese Parametrisierungsfunktion einen etwas anderen Satz von
Namen für die Untertests. Sie sehen folgendermaßen aus:
```bash
pytest test_this2.py --collect-only -q
```
und es wird aufgelistet:
```bash
test_this2.py::test_floor[integer-1-1.0]
test_this2.py::test_floor[negative--1.5--2.0]
test_this2.py::test_floor[large fraction-1.6-1]
```
Jetzt können Sie also nur den spezifischen Test durchführen:
```bash
pytest test_this2.py::test_floor[negative--1.5--2.0] test_this2.py::test_floor[integer-1-1.0]
```
wie im vorherigen Beispiel.
### Dateien und Verzeichnisse
In Tests müssen wir oft wissen, wo sich Dinge relativ zur aktuellen Testdatei befinden, und das ist nicht trivial, da der Test
von mehreren Verzeichnissen aus aufgerufen werden kann oder sich in Unterverzeichnissen mit unterschiedlicher Tiefe befinden kann. Eine Hilfsklasse
`transformers.test_utils.TestCasePlus` löst dieses Problem, indem sie alle grundlegenden Pfade sortiert und einfache
Zugriffsmöglichkeiten auf sie bietet:
- `pathlib`-Objekte (alle vollständig aufgelöst):
- `test_file_path` - der aktuelle Testdateipfad, d.h. `__file__`
- `test_file_dir` - das Verzeichnis, das die aktuelle Testdatei enthält
- `tests_dir` - das Verzeichnis der `tests` Testreihe
- `examples_dir` - das Verzeichnis der `examples` Test-Suite
- `repo_root_dir` - das Verzeichnis des Repositorys
- `src_dir` - das Verzeichnis von `src` (d.h. wo sich das Unterverzeichnis `transformers` befindet)
- stringifizierte Pfade - wie oben, aber diese geben Pfade als Strings zurück, anstatt als `pathlib`-Objekte:
- `test_file_path_str`
- `test_file_dir_str`
- `tests_dir_str`
- `examples_dir_str`
- `repo_root_dir_str`
- `src_dir_str`
Um diese zu verwenden, müssen Sie lediglich sicherstellen, dass der Test in einer Unterklasse von
`transformers.test_utils.TestCasePlus` befindet. Zum Beispiel:
```python
from transformers.testing_utils import TestCasePlus
class PathExampleTest(TestCasePlus):
def test_something_involving_local_locations(self):
data_dir = self.tests_dir / "fixtures/tests_samples/wmt_en_ro"
```
Wenn Sie Pfade nicht über `pathlib` manipulieren müssen oder nur einen Pfad als String benötigen, können Sie jederzeit
`str()` auf das `pathlib`-Objekt anwenden oder die Accessoren mit der Endung `_str` verwenden. Zum Beispiel:
```python
from transformers.testing_utils import TestCasePlus
class PathExampleTest(TestCasePlus):
def test_something_involving_stringified_locations(self):
examples_dir = self.examples_dir_str
```
### Temporäre Dateien und Verzeichnisse
Die Verwendung eindeutiger temporärer Dateien und Verzeichnisse ist für die parallele Durchführung von Tests unerlässlich, damit sich die Tests nicht gegenseitig überschreiben.
Daten gegenseitig überschreiben. Außerdem möchten wir, dass die temporären Dateien und Verzeichnisse am Ende jedes Tests, der sie erstellt hat, gelöscht werden.
erstellt hat. Daher ist die Verwendung von Paketen wie `tempfile`, die diese Anforderungen erfüllen, unerlässlich.
Beim Debuggen von Tests müssen Sie jedoch sehen können, was in der temporären Datei oder dem temporären Verzeichnis gespeichert wird und Sie möchten
Sie müssen den genauen Pfad kennen und dürfen ihn nicht bei jedem neuen Testdurchlauf zufällig ändern.
Für solche Zwecke ist die Hilfsklasse `transformers.test_utils.TestCasePlus` am besten geeignet. Sie ist eine Unterklasse von
Unittest.TestCase`, so dass wir in den Testmodulen einfach von ihr erben können.
Hier ist ein Beispiel für die Verwendung dieser Klasse:
```python
from transformers.testing_utils import TestCasePlus
class ExamplesTests(TestCasePlus):
def test_whatever(self):
tmp_dir = self.get_auto_remove_tmp_dir()
```
Dieser Code erstellt ein eindeutiges temporäres Verzeichnis und setzt `tmp_dir` auf dessen Speicherort.
- Erstellen Sie ein eindeutiges temporäres Verzeichnis:
```python
def test_whatever(self):
tmp_dir = self.get_auto_remove_tmp_dir()
```
tmp_dir" enthält den Pfad zu dem erstellten temporären Verzeichnis. Es wird am Ende des Tests automatisch entfernt.
Tests entfernt.
- Erstellen Sie ein temporäres Verzeichnis meiner Wahl, stellen Sie sicher, dass es leer ist, bevor der Test beginnt, und leeren Sie es nach dem Test nicht.
```python
def test_whatever(self):
tmp_dir = self.get_auto_remove_tmp_dir("./xxx")
```
Dies ist nützlich für die Fehlersuche, wenn Sie ein bestimmtes Verzeichnis überwachen und sicherstellen möchten, dass die vorherigen Tests keine Daten darin hinterlassen haben.
keine Daten dort hinterlassen haben.
- Sie können das Standardverhalten außer Kraft setzen, indem Sie die Argumente `before` und `after` direkt überschreiben, was zu einem der folgenden Verhaltensweisen führt
folgenden Verhaltensweisen:
- `before=True`: das temporäre Verzeichnis wird immer zu Beginn des Tests gelöscht.
- `before=False`: wenn das temporäre Verzeichnis bereits existiert, bleiben alle vorhandenen Dateien dort erhalten.
- `after=True`: das temporäre Verzeichnis wird immer am Ende des Tests gelöscht.
- `after=False`: das temporäre Verzeichnis wird am Ende des Tests immer beibehalten.
<Tip>
Um das Äquivalent von `rm -r` sicher ausführen zu können, sind nur Unterverzeichnisse des Projektarchivs checkout erlaubt, wenn
ein explizites `tmp_dir` verwendet wird, so dass nicht versehentlich ein `/tmp` oder ein ähnlich wichtiger Teil des Dateisystems vernichtet wird.
d.h. geben Sie bitte immer Pfade an, die mit `./` beginnen.
</Tip>
<Tip>
Jeder Test kann mehrere temporäre Verzeichnisse registrieren, die alle automatisch entfernt werden, sofern nicht anders gewünscht.
anders.
</Tip>
### Temporäre Überschreibung von sys.path
Wenn Sie `sys.path` vorübergehend überschreiben müssen, um z.B. von einem anderen Test zu importieren, können Sie den
Kontextmanager `ExtendSysPath` verwenden. Beispiel:
```python
import os
from transformers.testing_utils import ExtendSysPath
bindir = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(f"{bindir}/.."):
from test_trainer import TrainerIntegrationCommon # noqa
```
### Überspringen von Tests
Dies ist nützlich, wenn ein Fehler gefunden und ein neuer Test geschrieben wird, der Fehler aber noch nicht behoben ist. Damit wir ihn
in das Haupt-Repository zu übertragen, müssen wir sicherstellen, dass er bei `make test` übersprungen wird.
Methoden:
- Ein **Skip** bedeutet, dass Sie erwarten, dass Ihr Test nur dann erfolgreich ist, wenn einige Bedingungen erfüllt sind, andernfalls sollte pytest den Test überspringen.
die Ausführung des Tests ganz überspringen. Übliche Beispiele sind das Überspringen von Tests, die nur unter Windows laufen, auf Nicht-Windows-Plattformen oder das Überspringen von
Tests, die von einer externen Ressource abhängen, die im Moment nicht verfügbar ist (z.B. eine Datenbank).
- Ein **xfail** bedeutet, dass Sie erwarten, dass ein Test aus irgendeinem Grund fehlschlägt. Ein gängiges Beispiel ist ein Test für eine Funktion, die noch nicht
noch nicht implementiert oder ein noch nicht behobener Fehler. Wenn ein Test trotz eines erwarteten Fehlschlags bestanden wird (markiert mit
pytest.mark.xfail), ist dies ein xpass und wird in der Testzusammenfassung gemeldet.
Einer der wichtigsten Unterschiede zwischen den beiden ist, dass `skip` den Test nicht ausführt, während `xfail` dies tut. Wenn also der
Code, der fehlerhaft ist, einen schlechten Zustand verursacht, der sich auf andere Tests auswirkt, sollten Sie also nicht `xfail` verwenden.
#### Implementierung
- Hier sehen Sie, wie Sie einen ganzen Test bedingungslos überspringen können:
```python no-style
@unittest.skip("this bug needs to be fixed")
def test_feature_x():
```
oder mit pytest:
```python no-style
@pytest.mark.skip(reason="this bug needs to be fixed")
```
oder mit dem `xfail` Weg:
```python no-style
@pytest.mark.xfail
def test_feature_x():
```
- Hier erfahren Sie, wie Sie einen Test aufgrund einer internen Prüfung innerhalb des Tests auslassen können:
```python
def test_feature_x():
if not has_something():
pytest.skip("unsupported configuration")
```
oder das ganze Modul:
```python
import pytest
if not pytest.config.getoption("--custom-flag"):
pytest.skip("--custom-flag is missing, skipping tests", allow_module_level=True)
```
oder mit dem `xfail` Weg:
```python
def test_feature_x():
pytest.xfail("expected to fail until bug XYZ is fixed")
```
- Hier erfahren Sie, wie Sie alle Tests in einem Modul überspringen können, wenn ein Import fehlt:
```python
docutils = pytest.importorskip("docutils", minversion="0.3")
```
- Einen Test aufgrund einer Bedingung überspringen:
```python no-style
@pytest.mark.skipif(sys.version_info < (3,6), reason="requires python3.6 or higher")
def test_feature_x():
```
oder:
```python no-style
@unittest.skipIf(torch_device == "cpu", "Can't do half precision")
def test_feature_x():
```
oder überspringen Sie das ganze Modul:
```python no-style
@pytest.mark.skipif(sys.platform == 'win32', reason="does not run on windows")
class TestClass():
def test_feature_x(self):
```
Weitere Details, Beispiele und Möglichkeiten finden Sie [hier](https://docs.pytest.org/en/latest/skipping.html).
### Langsame Tests
Die Bibliothek der Tests wächst ständig, und einige der Tests brauchen Minuten, um ausgeführt zu werden, daher können wir es uns nicht leisten, eine Stunde zu warten, bis die
eine Stunde auf die Fertigstellung der Testsuite auf CI zu warten. Daher sollten langsame Tests, mit einigen Ausnahmen für wichtige Tests, wie im folgenden Beispiel
wie im folgenden Beispiel markiert werden:
```python no-style
from transformers.testing_utils import slow
@slow
def test_integration_foo():
```
Sobald ein Test als `@slow` markiert ist, setzen Sie die Umgebungsvariable `RUN_SLOW=1`, um solche Tests auszuführen, z.B:
```bash
RUN_SLOW=1 pytest tests
```
Einige Dekoratoren wie `@parameterized` schreiben Testnamen um, daher müssen `@slow` und die übrigen Skip-Dekoratoren
`@require_*` müssen als letztes aufgeführt werden, damit sie korrekt funktionieren. Hier ist ein Beispiel für die korrekte Verwendung:
```python no-style
@parameterized.expand(...)
@slow
def test_integration_foo():
```
Wie zu Beginn dieses Dokuments erläutert, werden langsame Tests nach einem Zeitplan ausgeführt und nicht in PRs CI
Prüfungen. Es ist also möglich, dass einige Probleme bei der Einreichung eines PRs übersehen werden und zusammengeführt werden. Solche Probleme werden
werden beim nächsten geplanten CI-Job abgefangen. Das bedeutet aber auch, dass es wichtig ist, die langsamen Tests auf Ihrem
Rechner auszuführen, bevor Sie den PR einreichen.
Hier ist ein grober Entscheidungsmechanismus für die Auswahl der Tests, die als langsam markiert werden sollen:
Wenn der Test auf eine der internen Komponenten der Bibliothek ausgerichtet ist (z.B. Modellierungsdateien, Tokenisierungsdateien,
Pipelines), dann sollten wir diesen Test in der nicht langsamen Testsuite ausführen. Wenn er sich auf einen anderen Aspekt der Bibliothek bezieht,
wie z.B. die Dokumentation oder die Beispiele, dann sollten wir diese Tests in der langsamen Testsuite durchführen. Und dann, zur Verfeinerung
Ansatz zu verfeinern, sollten wir Ausnahmen einführen:
- Alle Tests, die einen umfangreichen Satz von Gewichten oder einen Datensatz mit einer Größe von mehr als ~50MB herunterladen müssen (z.B. Modell- oder
Tokenizer-Integrationstests, Pipeline-Integrationstests) sollten auf langsam gesetzt werden. Wenn Sie ein neues Modell hinzufügen, sollten Sie
sollten Sie eine kleine Version des Modells (mit zufälligen Gewichtungen) für Integrationstests erstellen und in den Hub hochladen. Dies wird
wird in den folgenden Abschnitten erläutert.
- Alle Tests, die ein Training durchführen müssen, das nicht speziell auf Schnelligkeit optimiert ist, sollten auf langsam gesetzt werden.
- Wir können Ausnahmen einführen, wenn einige dieser Tests, die nicht langsam sein sollten, unerträglich langsam sind, und sie auf
`@slow`. Auto-Modellierungstests, die große Dateien auf der Festplatte speichern und laden, sind ein gutes Beispiel für Tests, die als
als `@slow` markiert sind.
- Wenn ein Test in weniger als 1 Sekunde auf CI abgeschlossen wird (einschließlich eventueller Downloads), sollte es sich trotzdem um einen normalen Test handeln.
Insgesamt müssen alle nicht langsamen Tests die verschiedenen Interna abdecken und dabei schnell bleiben. Zum Beispiel,
kann eine signifikante Abdeckung erreicht werden, indem Sie mit speziell erstellten kleinen Modellen mit zufälligen Gewichten testen. Solche Modelle
haben eine sehr geringe Anzahl von Schichten (z.B. 2), Vokabeln (z.B. 1000), usw. Dann können die `@slow`-Tests große
langsame Modelle verwenden, um qualitative Tests durchzuführen. Um die Verwendung dieser Modelle zu sehen, suchen Sie einfach nach *winzigen* Modellen mit:
```bash
grep tiny tests examples
```
Hier ist ein Beispiel für ein [Skript](https://github.com/huggingface/transformers/tree/main/scripts/fsmt/fsmt-make-tiny-model.py), das das winzige Modell erstellt hat
[stas/tiny-wmt19-en-de](https://huggingface.co/stas/tiny-wmt19-en-de). Sie können es ganz einfach an Ihre eigene
Architektur Ihres Modells anpassen.
Es ist leicht, die Laufzeit falsch zu messen, wenn zum Beispiel ein großes Modell heruntergeladen wird, aber wenn
Sie es lokal testen, würden die heruntergeladenen Dateien zwischengespeichert und somit die Download-Zeit nicht gemessen werden. Prüfen Sie daher den
Ausführungsgeschwindigkeitsbericht in den CI-Protokollen (die Ausgabe von `pytest --durations=0 tests`).
Dieser Bericht ist auch nützlich, um langsame Ausreißer zu finden, die nicht als solche gekennzeichnet sind oder die neu geschrieben werden müssen, um schnell zu sein.
Wenn Sie bemerken, dass die Testsuite beim CI langsam wird, zeigt die oberste Liste dieses Berichts die langsamsten
Tests.
### Testen der stdout/stderr-Ausgabe
Um Funktionen zu testen, die in `stdout` und/oder `stderr` schreiben, kann der Test auf diese Ströme zugreifen, indem er die
[capsys system](https://docs.pytest.org/en/latest/capture.html) von `pytest` zugreifen. So wird dies bewerkstelligt:
```python
import sys
def print_to_stdout(s):
print(s)
def print_to_stderr(s):
sys.stderr.write(s)
def test_result_and_stdout(capsys):
msg = "Hello"
print_to_stdout(msg)
print_to_stderr(msg)
out, err = capsys.readouterr() # consume the captured output streams
# optional: if you want to replay the consumed streams:
sys.stdout.write(out)
sys.stderr.write(err)
# test:
assert msg in out
assert msg in err
```
Und natürlich wird `stderr` in den meisten Fällen als Teil einer Ausnahme auftreten, so dass try/except in einem solchen Fall verwendet werden muss
Fall verwendet werden:
```python
def raise_exception(msg):
raise ValueError(msg)
def test_something_exception():
msg = "Not a good value"
error = ""
try:
raise_exception(msg)
except Exception as e:
error = str(e)
assert msg in error, f"{msg} is in the exception:\n{error}"
```
Ein anderer Ansatz zur Erfassung von stdout ist `contextlib.redirect_stdout`:
```python
from io import StringIO
from contextlib import redirect_stdout
def print_to_stdout(s):
print(s)
def test_result_and_stdout():
msg = "Hello"
buffer = StringIO()
with redirect_stdout(buffer):
print_to_stdout(msg)
out = buffer.getvalue()
# optional: if you want to replay the consumed streams:
sys.stdout.write(out)
# test:
assert msg in out
```
Ein wichtiges potenzielles Problem beim Erfassen von stdout ist, dass es `r` Zeichen enthalten kann, die bei normalem `print`
alles zurücksetzen, was bisher gedruckt wurde. Mit `pytest` gibt es kein Problem, aber mit `pytest -s` werden diese
werden diese Zeichen in den Puffer aufgenommen. Um den Test mit und ohne `-s` laufen zu lassen, müssen Sie also eine zusätzliche Bereinigung
zusätzliche Bereinigung der erfassten Ausgabe vornehmen, indem Sie `re.sub(r'~.*\r', '', buf, 0, re.M)` verwenden.
Aber dann haben wir einen Hilfskontextmanager-Wrapper, der sich automatisch um alles kümmert, unabhängig davon, ob er
einige "*.*.*.*" enthält oder nicht:
```python
from transformers.testing_utils import CaptureStdout
with CaptureStdout() as cs:
function_that_writes_to_stdout()
print(cs.out)
```
Hier ist ein vollständiges Testbeispiel:
```python
from transformers.testing_utils import CaptureStdout
msg = "Secret message\r"
final = "Hello World"
with CaptureStdout() as cs:
print(msg + final)
assert cs.out == final + "\n", f"captured: {cs.out}, expecting {final}"
```
Wenn Sie `stderr` aufzeichnen möchten, verwenden Sie stattdessen die Klasse `CaptureStderr`:
```python
from transformers.testing_utils import CaptureStderr
with CaptureStderr() as cs:
function_that_writes_to_stderr()
print(cs.err)
```
Wenn Sie beide Streams auf einmal erfassen müssen, verwenden Sie die übergeordnete Klasse `CaptureStd`:
```python
from transformers.testing_utils import CaptureStd
with CaptureStd() as cs:
function_that_writes_to_stdout_and_stderr()
print(cs.err, cs.out)
```
Um das Debuggen von Testproblemen zu erleichtern, geben diese Kontextmanager standardmäßig die aufgezeichneten Streams beim Verlassen
aus dem Kontext wieder.
### Erfassen von Logger-Streams
Wenn Sie die Ausgabe eines Loggers validieren müssen, können Sie `CaptureLogger` verwenden:
```python
from transformers import logging
from transformers.testing_utils import CaptureLogger
msg = "Testing 1, 2, 3"
logging.set_verbosity_info()
logger = logging.get_logger("transformers.models.bart.tokenization_bart")
with CaptureLogger(logger) as cl:
logger.info(msg)
assert cl.out, msg + "\n"
```
### Testen mit Umgebungsvariablen
Wenn Sie die Auswirkungen von Umgebungsvariablen für einen bestimmten Test testen möchten, können Sie einen Hilfsdekorator verwenden
`transformers.testing_utils.mockenv`
```python
from transformers.testing_utils import mockenv
class HfArgumentParserTest(unittest.TestCase):
@mockenv(TRANSFORMERS_VERBOSITY="error")
def test_env_override(self):
env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None)
```
Manchmal muss ein externes Programm aufgerufen werden, was die Einstellung von `PYTHONPATH` in `os.environ` erfordert, um mehrere lokale Pfade einzuschließen.
mehrere lokale Pfade. Eine Hilfsklasse `transformers.test_utils.TestCasePlus` hilft Ihnen dabei:
```python
from transformers.testing_utils import TestCasePlus
class EnvExampleTest(TestCasePlus):
def test_external_prog(self):
env = self.get_env()
# now call the external program, passing `env` to it
```
Je nachdem, ob die Testdatei in der Testsuite `tests` oder in `examples` war, wird sie korrekt eingerichtet
`env[PYTHONPATH]` eines dieser beiden Verzeichnisse und auch das `src` Verzeichnis, um sicherzustellen, dass der Test gegen das aktuelle
um sicherzustellen, dass der Test mit dem aktuellen Projektarchiv durchgeführt wird, und schließlich mit dem, was in `env[PYTHONPATH]` bereits eingestellt war, bevor der Test aufgerufen wurde.
wenn überhaupt.
Diese Hilfsmethode erstellt eine Kopie des Objekts `os.environ`, so dass das Original intakt bleibt.
### Reproduzierbare Ergebnisse erhalten
In manchen Situationen möchten Sie vielleicht die Zufälligkeit Ihrer Tests beseitigen. Um identische, reproduzierbare Ergebnisse zu erhalten, müssen Sie
müssen Sie den Seed festlegen:
```python
seed = 42
# python RNG
import random
random.seed(seed)
# pytorch RNGs
import torch
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# numpy RNG
import numpy as np
np.random.seed(seed)
# tf RNG
tf.random.set_seed(seed)
```
### Tests debuggen
Um einen Debugger an der Stelle zu starten, an der die Warnung auftritt, gehen Sie wie folgt vor:
```bash
pytest tests/utils/test_logging.py -W error::UserWarning --pdb
```
## Arbeiten mit Github-Aktionen-Workflows
Um einen CI-Job für einen Self-Push-Workflow auszulösen, müssen Sie:
1. Erstellen Sie einen neuen Zweig auf `transformers` Ursprung (keine Gabelung!).
2. Der Name der Verzweigung muss entweder mit `ci_` oder `ci-` beginnen (`main` löst ihn auch aus, aber wir können keine PRs auf
`main`). Es wird auch nur für bestimmte Pfade ausgelöst - Sie können die aktuelle Definition finden, falls sie
falls sie sich seit der Erstellung dieses Dokuments geändert hat [hier](https://github.com/huggingface/transformers/blob/main/.github/workflows/self-push.yml) unter *push:*
3. Erstellen Sie einen PR von diesem Zweig.
4. Dann können Sie sehen, wie der Job erscheint [hier](https://github.com/huggingface/transformers/actions/workflows/self-push.yml). Er wird möglicherweise nicht sofort ausgeführt, wenn es
ein Backlog vorhanden ist.
## Testen experimenteller CI-Funktionen
Das Testen von CI-Funktionen kann potenziell problematisch sein, da es die normale CI-Funktion beeinträchtigen kann. Wenn also eine
neue CI-Funktion hinzugefügt werden soll, sollte dies wie folgt geschehen.
1. Erstellen Sie einen neuen Auftrag, der die zu testende Funktion testet.
2. Der neue Job muss immer erfolgreich sein, so dass er uns ein grünes ✓ gibt (Details unten).
3. Lassen Sie ihn einige Tage lang laufen, um zu sehen, dass eine Vielzahl verschiedener PR-Typen darauf laufen (Benutzer-Gabelzweige,
nicht geforkte Zweige, Zweige, die von github.com UI direct file edit stammen, verschiedene erzwungene Pushes, etc. - es gibt
es gibt so viele), während Sie die Protokolle des experimentellen Jobs überwachen (nicht den gesamten Job grün, da er absichtlich immer
grün)
4. Wenn klar ist, dass alles in Ordnung ist, fügen Sie die neuen Änderungen in die bestehenden Jobs ein.
Auf diese Weise wird der normale Arbeitsablauf nicht durch Experimente mit der CI-Funktionalität selbst beeinträchtigt.
Wie können wir nun dafür sorgen, dass der Auftrag immer erfolgreich ist, während die neue CI-Funktion entwickelt wird?
Einige CIs, wie TravisCI, unterstützen ignore-step-failure und melden den gesamten Job als erfolgreich, aber CircleCI und
Github Actions unterstützen dies zum jetzigen Zeitpunkt nicht.
Sie können also die folgende Abhilfe verwenden:
1. Setzen Sie `set +euo pipefail` am Anfang des Ausführungsbefehls, um die meisten potenziellen Fehler im Bash-Skript zu unterdrücken.
2. Der letzte Befehl muss ein Erfolg sein: `echo "done"` oder einfach `true` reicht aus.
Hier ist ein Beispiel:
```yaml
- run:
name: run CI experiment
command: |
set +euo pipefail
echo "setting run-all-despite-any-errors-mode"
this_command_will_fail
echo "but bash continues to run"
# emulate another failure
false
# but the last command must be a success
echo "during experiment do not remove: reporting success to CI, even if there were failures"
```
Für einfache Befehle können Sie auch Folgendes tun:
```bash
cmd_that_may_fail || true
```
Wenn Sie mit den Ergebnissen zufrieden sind, integrieren Sie den experimentellen Schritt oder Job natürlich in den Rest der normalen Jobs,
Entfernen Sie dabei `set +euo pipefail` oder andere Dinge, die Sie eventuell hinzugefügt haben, um sicherzustellen, dass der experimentelle Auftrag nicht
den normalen CI-Betrieb nicht beeinträchtigt.
Dieser ganze Prozess wäre viel einfacher gewesen, wenn wir nur etwas wie `allow-failure` für den
experimentellen Schritt festlegen könnten und ihn scheitern lassen würden, ohne den Gesamtstatus der PRs zu beeinträchtigen. Aber wie bereits erwähnt, haben CircleCI und
Github Actions dies im Moment nicht unterstützen.
Sie können in diesen CI-spezifischen Threads für diese Funktion stimmen und sehen, wo sie steht:
- [Github Actions:](https://github.com/actions/toolkit/issues/399)
- [CircleCI:](https://ideas.circleci.com/ideas/CCI-I-344)
|