File size: 3,144 Bytes
2590409
 
 
 
 
 
 
 
 
 
 
 
90baed8
2590409
90baed8
2590409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
import torch
from PIL import Image
import io
import pandas as pd

from model import RadarDetectionModel
from feature_extraction import (calculate_amplitude, classify_amplitude,
                                calculate_distribution_range, classify_distribution_range,
                                calculate_attenuation_rate, classify_attenuation_rate,
                                count_reflections, classify_reflections)
from report_generation import generate_report
from utils import plot_detection
from database import save_report, get_report_history
from report_generation import render_report
model = RadarDetectionModel()


def process_image(image):
    detection_result = model.detect(image)

    np_image = np.array(image)
    amplitude = calculate_amplitude(np_image)
    amplitude_class = classify_amplitude(amplitude)

    box = detection_result['boxes'][0].tolist()
    distribution_range = calculate_distribution_range(box)
    distribution_class = classify_distribution_range(distribution_range)

    attenuation_rate = calculate_attenuation_rate(np_image)
    attenuation_class = classify_attenuation_rate(attenuation_rate)

    reflection_count = count_reflections(np_image)
    reflection_class = classify_reflections(reflection_count)

    features = {
        "振幅": amplitude_class,
        "分布范围": distribution_class,
        "衰减速度": attenuation_class,
        "反射次数": reflection_class
    }

    report = generate_report(detection_result, image, features)

    detection_image = plot_detection(image, detection_result)

    save_report(report)

    return detection_image, report


def analyze_radar_image(image):
    detection_image, report = process_image(image)
    report_html = render_report(report)
    return detection_image, report_html


def display_history():
    reports = get_report_history()
    history_html = "<div class='history-container'><h3>历史记录</h3>"
    for report in reports:
        history_html += f"""
        <div class='history-item'>
            <p><strong>报告ID:</strong> {report.report_id}</p>
            <p><strong>缺陷类型:</strong> {report.defect_type}</p>
            <p><strong>描述:</strong> {report.description}</p>
            <p><strong>创建时间:</strong> {report.created_at}</p>
        </div>
        """
    history_html += "</div>"
    return history_html


with gr.Blocks(css="static/style.css") as iface:
    gr.Markdown("# 雷达图谱分析系统")
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="pil", label="上传雷达图谱")
            analyze_button = gr.Button("分析")
        with gr.Column(scale=2):
            output_image = gr.Image(type="pil", label="检测结果")
            output_report = gr.HTML(label="分析报告")

    history_button = gr.Button("查看历史记录")
    history_output = gr.HTML()

    analyze_button.click(analyze_radar_image, inputs=[
                         input_image], outputs=[output_image, output_report])
    history_button.click(display_history, inputs=[], outputs=[history_output])

iface.launch()