LKCell / config.yaml
qingke1's picture
initial commit
aea73e2
raw
history blame
2.86 kB
CUDA_VISIBLE_DEVICES: 3
logging:
log_dir: /data5/ziweicui/cellvit256-unireplknet-n
mode: online
project: Cell-Segmentation
notes: CellViT-256
log_comment: CellViT-256-resnet50-tiny
tags:
- Fold-1
- ViT256
wandb_dir: /data5/ziweicui/UniRepLKNet-optimizerconfig-unetdecoder-inputconv/results
level: Debug
group: CellViT256
run_id: anifw9ux
wandb_file: anifw9ux
random_seed: 19
gpu: 0
data:
dataset: PanNuke
dataset_path: /data5/ziweicui/cellvit-png
train_folds:
- 0
val_folds:
- 1
test_folds:
- 2
num_nuclei_classes: 6
num_tissue_classes: 19
model:
backbone: default
pretrained_encoder: /data5/ziweicui/semi_supervised_resnet50-08389792.pth
shared_skip_connections: true
loss:
nuclei_binary_map:
focaltverskyloss:
loss_fn: FocalTverskyLoss
weight: 1
dice:
loss_fn: dice_loss
weight: 1
hv_map:
mse:
loss_fn: mse_loss_maps
weight: 2.5
msge:
loss_fn: msge_loss_maps
weight: 8
nuclei_type_map:
bce:
loss_fn: xentropy_loss
weight: 0.5
dice:
loss_fn: dice_loss
weight: 0.2
mcfocaltverskyloss:
loss_fn: MCFocalTverskyLoss
weight: 0.5
args:
num_classes: 6
tissue_types:
ce:
loss_fn: CrossEntropyLoss
weight: 0.1
training:
drop_rate: 0
attn_drop_rate: 0.1
drop_path_rate: 0.1
batch_size: 32
epochs: 130
optimizer: AdamW
early_stopping_patience: 130
scheduler:
scheduler_type: cosine
hyperparameters:
#gamma: 0.85
eta_min: 1e-5
optimizer_hyperparameter:
# betas:
# - 0.85
# - 0.95
#lr: 0.004
opt_lower: 'AdamW'
lr: 0.0008
opt_betas: [0.85,0.95]
weight_decay: 0.05
opt_eps: 0.00000008
unfreeze_epoch: 25
sampling_gamma: 0.85
sampling_strategy: cell+tissue
mixed_precision: true
transformations:
randomrotate90:
p: 0.5
horizontalflip:
p: 0.5
verticalflip:
p: 0.5
downscale:
p: 0.15
scale: 0.5
blur:
p: 0.2
blur_limit: 10
gaussnoise:
p: 0.25
var_limit: 50
colorjitter:
p: 0.2
scale_setting: 0.25
scale_color: 0.1
superpixels:
p: 0.1
zoomblur:
p: 0.1
randomsizedcrop:
p: 0.1
elastictransform:
p: 0.2
normalize:
mean:
- 0.5
- 0.5
- 0.5
std:
- 0.5
- 0.5
- 0.5
eval_checkpoint: latest_checkpoint.pth
dataset_config:
tissue_types:
Adrenal_gland: 0
Bile-duct: 1
Bladder: 2
Breast: 3
Cervix: 4
Colon: 5
Esophagus: 6
HeadNeck: 7
Kidney: 8
Liver: 9
Lung: 10
Ovarian: 11
Pancreatic: 12
Prostate: 13
Skin: 14
Stomach: 15
Testis: 16
Thyroid: 17
Uterus: 18
nuclei_types:
Background: 0
Neoplastic: 1
Inflammatory: 2
Connective: 3
Dead: 4
Epithelial: 5
run_sweep: false
agent: null