Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Residual block as defined in: | |
# He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning | |
# for image recognition." In Proceedings of the IEEE conference on computer vision | |
# and pattern recognition, pp. 770-778. 2016. | |
# | |
# Code Snippet adapted from HoverNet implementation (https://github.com/vqdang/hover_net) | |
# | |
# @ Fabian Hörst, [email protected] | |
# Institute for Artifical Intelligence in Medicine, | |
# University Medicine Essen | |
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
from models.utils.tf_utils import TFSamepaddingLayer | |
class ResidualBlock(nn.Module): | |
"""Residual block as defined in: | |
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning | |
for image recognition." In Proceedings of the IEEE conference on computer vision | |
and pattern recognition, pp. 770-778. 2016. | |
""" | |
def __init__(self, in_ch, unit_ksize, unit_ch, unit_count, stride=1): | |
super(ResidualBlock, self).__init__() | |
assert len(unit_ksize) == len(unit_ch), "Unbalance Unit Info" | |
self.nr_unit = unit_count | |
self.in_ch = in_ch | |
self.unit_ch = unit_ch | |
# ! For inference only so init values for batchnorm may not match tensorflow | |
unit_in_ch = in_ch | |
self.units = nn.ModuleList() | |
for idx in range(unit_count): | |
unit_layer = [ | |
("preact/bn", nn.BatchNorm2d(unit_in_ch, eps=1e-5)), | |
("preact/relu", nn.ReLU(inplace=True)), | |
( | |
"conv1", | |
nn.Conv2d( | |
unit_in_ch, | |
unit_ch[0], | |
unit_ksize[0], | |
stride=1, | |
padding=0, | |
bias=False, | |
), | |
), | |
("conv1/bn", nn.BatchNorm2d(unit_ch[0], eps=1e-5)), | |
("conv1/relu", nn.ReLU(inplace=True)), | |
( | |
"conv2/pad", | |
TFSamepaddingLayer( | |
ksize=unit_ksize[1], stride=stride if idx == 0 else 1 | |
), | |
), | |
( | |
"conv2", | |
nn.Conv2d( | |
unit_ch[0], | |
unit_ch[1], | |
unit_ksize[1], | |
stride=stride if idx == 0 else 1, | |
padding=0, | |
bias=False, | |
), | |
), | |
("conv2/bn", nn.BatchNorm2d(unit_ch[1], eps=1e-5)), | |
("conv2/relu", nn.ReLU(inplace=True)), | |
( | |
"conv3", | |
nn.Conv2d( | |
unit_ch[1], | |
unit_ch[2], | |
unit_ksize[2], | |
stride=1, | |
padding=0, | |
bias=False, | |
), | |
), | |
] | |
# * has bna to conclude each previous block so | |
# * must not put preact for the first unit of this block | |
unit_layer = unit_layer if idx != 0 else unit_layer[2:] | |
self.units.append(nn.Sequential(OrderedDict(unit_layer))) | |
unit_in_ch = unit_ch[-1] | |
if in_ch != unit_ch[-1] or stride != 1: | |
self.shortcut = nn.Conv2d(in_ch, unit_ch[-1], 1, stride=stride, bias=False) | |
else: | |
self.shortcut = None | |
self.blk_bna = nn.Sequential( | |
OrderedDict( | |
[ | |
("bn", nn.BatchNorm2d(unit_in_ch, eps=1e-5)), | |
("relu", nn.ReLU(inplace=True)), | |
] | |
) | |
) | |
def out_ch(self): | |
return self.unit_ch[-1] | |
def init_weights(self): | |
"""Kaiming (HE) initialization for convolutional layers and constant initialization for normalization and linear layers""" | |
for m in self.modules(): | |
classname = m.__class__.__name__ | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
if "norm" in classname.lower(): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
if "linear" in classname.lower(): | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, prev_feat, freeze=False): | |
if self.shortcut is None: | |
shortcut = prev_feat | |
else: | |
shortcut = self.shortcut(prev_feat) | |
for idx in range(0, len(self.units)): | |
new_feat = prev_feat | |
if self.training: | |
with torch.set_grad_enabled(not freeze): | |
new_feat = self.units[idx](new_feat) | |
else: | |
new_feat = self.units[idx](new_feat) | |
prev_feat = new_feat + shortcut | |
shortcut = prev_feat | |
feat = self.blk_bna(prev_feat) | |
return feat | |