Hiroaki Ogasawara
chore: tab name
704a0d2
raw
history blame
3.55 kB
import json
import os
import tempfile
import gradio as gr
from utils import evaluate, report
from transformers import AutoTokenizer
def process_jsonl_file(jsonl_file_path: str, api_key: str):
try:
content = open(jsonl_file_path, "r", encoding="utf-8").readlines()
json_data = [json.loads(line) for line in content]
if api_key is not None and api_key != "":
json_data = evaluate(json_data, api_key)
html_content = report(tasks=json_data)
file_name_with_ext = os.path.basename(jsonl_file_path)
file_name, _ = os.path.splitext(file_name_with_ext)
with tempfile.NamedTemporaryFile(
delete=False,
prefix=f"{file_name}-report-",
suffix=".html",
mode="w",
encoding="utf-8",
) as temp_file:
temp_file.write(html_content)
output_file = temp_file.name
return output_file, ""
except Exception as e:
return None, e
# Gradioデモ
with gr.Blocks() as reporting:
jsonl_input = gr.File(label="JSONLファイルをアップロード")
api_key_input = gr.Textbox(
label="GeminiのAPIキー(スコアのセルフ評価を行う場合)", type="password"
)
gr.Markdown("APIキーの発行は[こちら](https://aistudio.google.com/app/apikey)")
process_button = gr.Button("レポートを作成")
output_file = gr.File(label="セルフ評価レポート")
output_text = gr.Textbox(label="システムメッセージ")
process_button.click(
process_jsonl_file,
inputs=[jsonl_input, api_key_input],
outputs=[output_file, output_text],
)
llm_jp_3 = "llm-jp/llm-jp-3-1.8b"
gemma_2 = "google/gemma-2-2b"
llm_jp_3_tokenizer = AutoTokenizer.from_pretrained(llm_jp_3, trust_remote_code=True)
tokenizers = {
"LLM-JP-3": llm_jp_3_tokenizer,
}
try:
gemma_2_tokenizer = AutoTokenizer.from_pretrained(gemma_2, trust_remote_code=True)
tokenizers["Gemma-2"] = gemma_2_tokenizer
except OSError as e:
print(e)
tokenizer_names = list(tokenizers.keys())
def tokenize_text(text: str, tokenizer_name: str):
tokenizer = tokenizers[tokenizer_name]
tokens = tokenizer.tokenize(text)
colors = ["#FFCCCC", "#CCFFCC", "#CCCCFF", "#FFFFCC", "#CCFFFF", "#FFCCFF"]
tokenized_text = "".join(
[
f'<span style="background-color:{colors[i % len(colors)]}">{token}</span> '
for i, token in enumerate(tokens)
]
)
token_count = len(tokens)
return f"<p>{tokenized_text}</p><p>Token Count: {token_count}</p>"
with gr.Blocks() as tokenization:
with gr.Row():
tokenizer_dropdown = gr.Dropdown(
label="Tokenizerを選択", choices=tokenizer_names, value=tokenizer_names[0]
)
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Input Text")
with gr.Column():
tokenized_output = gr.HTML(
tokenize_text("", tokenizer_names[0]), label="Tokenized Output"
)
tokenizer_dropdown.change(
tokenize_text, inputs=[text_input, tokenizer_dropdown], outputs=tokenized_output
)
text_input.change(
tokenize_text, inputs=[text_input, tokenizer_dropdown], outputs=tokenized_output
)
tabbed = gr.TabbedInterface(
[reporting, tokenization],
tab_names=["ELYZA-tasks-100(-TV) セルフ評価", "トークンの可視化"],
title="LLM開発支援ツール",
)
if __name__ == "__main__":
tabbed.launch()