Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from PIL import Image | |
from safetensors import safe_open | |
from torchvision import models, transforms | |
labels = ["bread", "dog"] | |
model = models.vgg16(pretrained=True) | |
model.classifier[6] = torch.nn.Linear(in_features=4096, out_features=2) | |
model_save_path = "models/model.safetensors" | |
tensors = {} | |
with safe_open(model_save_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
tensors[key] = f.get_tensor(key) | |
model.load_state_dict(tensors, strict=False) | |
model.eval() | |
preprocess = transforms.Compose([ | |
transforms.Resize((224, 224)), # Resize all images to 224x224 | |
transforms.ToTensor(), # Convert images to PyTorch tensors | |
]) | |
def classify_image(input_image: Image): | |
img_t = preprocess(input_image) | |
batch_t = torch.unsqueeze(img_t, 0) | |
with torch.no_grad(): | |
output = model(batch_t) | |
probabilities = torch.nn.functional.softmax(output, dim=1) | |
label_to_prob = {labels[i]: prob for i, prob in enumerate(probabilities[0])} | |
return label_to_prob | |
demo = gr.Interface(fn=classify_image, inputs=gr.Image(type='pil'), outputs='label') | |
demo.launch() | |