|
import os, sys |
|
import argparse |
|
import cv2 |
|
import gradio as gr |
|
import torch |
|
|
|
from srvgg_arch import SRVGGNetCompact |
|
from realesrgan import RealESRGANer |
|
from glob import glob |
|
|
|
from RestoreFormer import RestoreFormer |
|
|
|
if not os.path.exists('experiments/pretrained_models'): |
|
os.makedirs('experiments/pretrained_models') |
|
realesr_model_path = 'experiments/pretrained_models/RealESRGAN_x4plus.pth' |
|
if not os.path.exists(realesr_model_path): |
|
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O experiments/pretrained_models/RealESRGAN_x4plus.pth") |
|
|
|
if not os.path.exists('experiments/RestoreFormer/'): |
|
os.makedirs('experiments/RestoreFormer/') |
|
restoreformer_model_path = 'experiments/RestoreFormer/last.ckpt' |
|
if not os.path.exists(restoreformer_model_path): |
|
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt -O experiments/RestoreFormer/last.ckpt") |
|
|
|
if not os.path.exists('experiments/RestoreFormerPlusPlus/'): |
|
os.makedirs('experiments/RestoreFormerPlusPlus/') |
|
restoreformerplusplus_model_path = 'experiments/RestoreFormerPlusPlus/last.ckpt' |
|
if not os.path.exists(restoreformerplusplus_model_path): |
|
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt -O experiments/RestoreFormerPlusPlus/last.ckpt") |
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
half = True if torch.cuda.is_available() else False |
|
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) |
|
|
|
os.makedirs('output', exist_ok=True) |
|
|
|
|
|
|
|
def inference(img, version, aligned, scale): |
|
|
|
print(img, version, scale) |
|
if scale > 4: |
|
scale = 4 |
|
try: |
|
extension = os.path.splitext(os.path.basename(str(img)))[1] |
|
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = 'RGBA' |
|
elif len(img.shape) == 2: |
|
img_mode = None |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
else: |
|
img_mode = None |
|
|
|
h, w = img.shape[0:2] |
|
if h > 3500 or w > 3500: |
|
print('too large size') |
|
return None, None |
|
|
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
if version == 'RestoreFormer': |
|
face_enhancer = RestoreFormer( |
|
model_path=restoreformer_model_path, upscale=2, arch='RestoreFormer', bg_upsampler=upsampler) |
|
elif version == 'RestoreFormer++': |
|
face_enhancer = RestoreFormer( |
|
model_path=restoreformerplusplus_model_path, upscale=2, arch='RestoreFormer++', bg_upsampler=upsampler) |
|
|
|
try: |
|
|
|
has_aligned = True if aligned == 'aligned' else False |
|
_, restored_aligned, restored_img = face_enhancer.enhance(img, has_aligned=has_aligned, only_center_face=False, paste_back=True) |
|
if has_aligned: |
|
output = restored_aligned[0] |
|
else: |
|
output = restored_img |
|
except RuntimeError as error: |
|
print('Error', error) |
|
|
|
try: |
|
if scale != 2: |
|
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 |
|
h, w = img.shape[0:2] |
|
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) |
|
except Exception as error: |
|
print('wrong scale input.', error) |
|
if img_mode == 'RGBA': |
|
extension = 'png' |
|
else: |
|
extension = 'jpg' |
|
save_path = f'output/out.{extension}' |
|
cv2.imwrite(save_path, output) |
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) |
|
return output, save_path |
|
except Exception as error: |
|
print('global exception', error) |
|
return None, None |
|
|
|
|
|
title = "RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris" |
|
important_links=r''' |
|
<div align='center'> |
|
[![paper_RestroeForemer++](https://img.shields.io/badge/TPAMI-Restorformer%2B%2B-green |
|
)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf) |
|
|
|
[![paere_RestroeForemer](https://img.shields.io/badge/CVPR22-Restorformer-green)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf) |
|
|
|
[![code_RestroeForemer++](https://img.shields.io/badge/GitHub-RestoreFormer%2B%2B-red |
|
|
|
)](https://github.com/wzhouxiff/RestoreFormerPlusPlus) |
|
|
|
[![code_RestroeForemer](https://img.shields.io/badge/GitHub-RestoreFormer-red)](https://github.com/wzhouxiff/RestoreFormer) |
|
|
|
[![demo](https://img.shields.io/badge/Demo-Gradio-orange |
|
)](https://gradio.app/hub/wzhouxiff/RestoreFormerPlusPlus) |
|
</div> |
|
''' |
|
description = r""" |
|
<div align='center'> |
|
<a target='_blank' href='https://arxiv.org/pdf/2308.07228.pdf' style='float: left'> |
|
<img src='https://img.shields.io/badge/TPAMI-RestorFormer%2B%2B-green' alt='paper_RestroeForemer++'> |
|
</a> |
|
       |
|
<a target='_blank' href='https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf' style='float: left'> |
|
<img src='https://img.shields.io/badge/CVPR22-RestorFormer-green' alt='paere_RestroeForemer' > |
|
</a> |
|
       |
|
<a target='_blank' href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' style='float: left'> |
|
<img src='https://img.shields.io/badge/GitHub-RestoreFormer%2B%2B-red' alt='code_RestroeForemer++'> |
|
</a> |
|
       |
|
<a target='_blank' href='https://github.com/wzhouxiff/RestoreFormer' style='float: left'> |
|
<img src='https://img.shields.io/badge/GitHub-RestoreFormer-red' alt='code_RestroeForemer' > |
|
</a> |
|
       |
|
<a target='_blank' href='https://huggingface.co/spaces/wzhouxiff/RestoreFormerPlusPlus' style='float: left' > |
|
<img src='https://img.shields.io/badge/Demo-Gradio-orange' alt='demo' > |
|
</a> |
|
       |
|
</div> |
|
<br> |
|
Gradio demo for <a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris</b></a>. |
|
<br> |
|
It is used to restore your Old Photos. |
|
<br> |
|
To use it, simply upload your image.<br> |
|
""" |
|
|
|
article = r""" |
|
If the proposed algorithm is helpful, please help to β the GitHub Repositories: <a href='https://github.com/wzhouxiff/RestoreFormer' target='_blank'>RestoreFormer</a> and |
|
<a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'>RestoreFormer++</a>. Thanks! |
|
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FRestoreFormer |
|
)](https://github.com/wzhouxiff/RestoreFormer) |
|
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FRestoreFormerPlusPlus |
|
)](https://github.com/wzhouxiff/RestoreFormerPlusPlus) |
|
|
|
--- |
|
|
|
π **Citation** |
|
<br> |
|
If our work is useful for your research, please consider citing: |
|
```bibtex |
|
@article{wang2023restoreformer++, |
|
title={RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris}, |
|
author={Wang, Zhouxia and Zhang, Jiawei and Chen, Tianshui and Wang, Wenping and Luo, Ping}, |
|
booktitle={IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)}, |
|
year={2023} |
|
} |
|
@article{wang2022restoreformer, |
|
title={RestoreFormer: High-Quality Blind Face Restoration from Undegraded Key-Value Pairs}, |
|
author={Wang, Zhouxia and Zhang, Jiawei and Chen, Runjian and Wang, Wenping and Luo, Ping}, |
|
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
year={2022} |
|
} |
|
``` |
|
|
|
If you have any question, please email π§ `[email protected]`. |
|
""" |
|
|
|
css=r""" |
|
|
|
""" |
|
|
|
demo = gr.Interface( |
|
inference, [ |
|
gr.Image(type="filepath", label="Input"), |
|
gr.Radio(['RestoreFormer', 'RestoreFormer++'], type="value", value='RestoreFormer++', label='version'), |
|
gr.Radio(['aligned', 'unaligned'], type="value", value='unaligned', label='Image Alignment'), |
|
gr.Number(label="Rescaling factor", value=2), |
|
], [ |
|
gr.Image(type="numpy", label="Output (The whole image)"), |
|
gr.File(label="Download the output image") |
|
], |
|
title=title, |
|
description=description, |
|
article=article, |
|
) |
|
|
|
demo.queue(max_size=20).launch() |