|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
|
|
api_key = os.environ.get('qwen_API_KEY') |
|
""" |
|
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct", token=api_key) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
example_prompts = [ |
|
["How to cook Kung Pao chicken the tastiest?", ""], |
|
["你是谁开发的?", ""], |
|
["写一篇关于青春的五言绝句", ""], |
|
["你是谁?", ""] |
|
] |
|
latex_delimiters = [ |
|
{"left": "$$", "right": "$$", "display": True}, |
|
{"left": "\\[", "right": "\\]", "display": True}, |
|
{"left": "$", "right": "$", "display": False}, |
|
{"left": "\\(", "right": "\\)", "display": False} |
|
] |
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
examples=example_prompts, |
|
title="千问2.5-72B", |
|
description="千问2.5-72B聊天机器人", |
|
additional_inputs=[ |
|
gr.Textbox(value="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", label="System message"), |
|
gr.Slider(minimum=1, maximum=8888, value=2048, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
chatbot=gr.Chatbot(show_label=True, latex_delimiters=latex_delimiters, show_copy_button=True) |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(default_concurrency_limit=40) |
|
demo.launch(max_threads=40) |