File size: 2,072 Bytes
28c6f95
 
548b6a7
b3a9230
 
548b6a7
28c6f95
 
 
bd943ee
28c6f95
 
 
 
 
 
 
6706d71
28c6f95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6706d71
68f68a8
28c6f95
 
 
 
ccf21d2
 
 
 
 
 
 
6706d71
28c6f95
 
ccf21d2
a007d73
 
28c6f95
9a86ca9
 
28c6f95
013aded
28c6f95
b3a9230
6e484d8
28c6f95
 
 
ccf21d2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json

api_key=os.environ.get('qwen_API_KEY')
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct",token=api_key)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p
    ):
        token = message.choices[0].delta.content

        response += token
        yield response
        
example_prompts = [
    ["How to cook Kung Pao chicken the tastiest?"],
    ["Help me create an email expressing my greetings to an old friend."],
    ["写一篇关于青春的五言绝句"],
    ["你是谁?"]
]

demo = gr.ChatInterface(
    respond,
    examples=example_prompts,
    title="千问2.5-72B",
    description="千问2.5-72B聊天机器人",
    additional_inputs=[
        gr.Textbox(value="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=8888, value=2048, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
    chatbot=gr.Chatbot(show_label=True, show_copy_button=True)

)

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=40)
    demo.launch(max_threads=40)