Spaces:
Running
on
Zero
Running
on
Zero
Apply black
Browse files
app.py
CHANGED
@@ -19,10 +19,8 @@ import warnings
|
|
19 |
|
20 |
from gradio_demo.utils_drag import *
|
21 |
from models_diffusers.controlnet_svd import ControlNetSVDModel
|
22 |
-
from models_diffusers.unet_spatio_temporal_condition import
|
23 |
-
|
24 |
-
from pipelines.pipeline_stable_video_diffusion_interp_control import \
|
25 |
-
StableVideoDiffusionInterpControlPipeline
|
26 |
|
27 |
print("gr file", gr.__file__)
|
28 |
|
@@ -43,6 +41,7 @@ snapshot_download(
|
|
43 |
|
44 |
def get_args():
|
45 |
import argparse
|
|
|
46 |
parser = argparse.ArgumentParser()
|
47 |
|
48 |
parser.add_argument("--min_guidance_scale", type=float, default=1.0)
|
@@ -55,11 +54,12 @@ def get_args():
|
|
55 |
parser.add_argument(
|
56 |
"--dataset",
|
57 |
type=str,
|
58 |
-
default=
|
59 |
)
|
60 |
|
61 |
parser.add_argument(
|
62 |
-
"--model",
|
|
|
63 |
default="checkpoints/framer_512x320",
|
64 |
help="Path to model.",
|
65 |
)
|
@@ -112,27 +112,34 @@ def interpolate_trajectory(points, n_points):
|
|
112 |
|
113 |
def gen_gaussian_heatmap(imgSize=200):
|
114 |
circle_img = np.zeros((imgSize, imgSize), np.float32)
|
115 |
-
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
|
116 |
|
117 |
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
|
118 |
|
119 |
for i in range(imgSize):
|
120 |
for j in range(imgSize):
|
121 |
-
isotropicGrayscaleImage[i, j] =
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
|
125 |
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
|
126 |
-
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
|
127 |
|
128 |
return isotropicGrayscaleImage
|
129 |
|
130 |
|
131 |
def get_vis_image(
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
136 |
|
137 |
# images = []
|
138 |
vis_images = []
|
@@ -140,13 +147,13 @@ def get_vis_image(
|
|
140 |
|
141 |
trajectory_list = []
|
142 |
radius_list = []
|
143 |
-
|
144 |
for index, point in enumerate(points):
|
145 |
trajectories = [[int(i[0]), int(i[1])] for i in point]
|
146 |
trajectory_list.append(trajectories)
|
147 |
|
148 |
radius = 20
|
149 |
-
radius_list.append(radius)
|
150 |
|
151 |
if len(trajectory_list) == 0:
|
152 |
vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)]
|
@@ -156,33 +163,39 @@ def get_vis_image(
|
|
156 |
new_img = np.zeros(target_size, np.uint8)
|
157 |
vis_img = new_img.copy()
|
158 |
# ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
|
159 |
-
|
160 |
if idxx >= args.num_frames:
|
161 |
break
|
162 |
|
163 |
# for cc, (mask, trajectory, radius) in enumerate(zip(mask_list, trajectory_list, radius_list)):
|
164 |
for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)):
|
165 |
-
|
166 |
center_coordinate = trajectory[idxx]
|
167 |
trajectory_ = trajectory[:idxx]
|
168 |
side = min(radius, 50)
|
169 |
-
|
170 |
-
y1 = max(center_coordinate[1] - side,0)
|
171 |
y2 = min(center_coordinate[1] + side, target_size[0] - 1)
|
172 |
x1 = max(center_coordinate[0] - side, 0)
|
173 |
x2 = min(center_coordinate[0] + side, target_size[1] - 1)
|
174 |
-
|
175 |
-
if x2-x1>3 and y2-y1>3:
|
176 |
-
need_map = cv2.resize(heatmap, (x2-x1, y2-y1))
|
177 |
new_img[y1:y2, x1:x2] = need_map.copy()
|
178 |
-
|
179 |
if cc >= 0:
|
180 |
-
vis_img[y1:y2,x1:x2] = need_map.copy()
|
181 |
if len(trajectory_) == 1:
|
182 |
vis_img[trajectory_[0][1], trajectory_[0][0]] = 255
|
183 |
else:
|
184 |
-
for itt in range(len(trajectory_)-1):
|
185 |
-
cv2.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
img = new_img
|
188 |
|
@@ -193,7 +206,7 @@ def get_vis_image(
|
|
193 |
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format
|
194 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
195 |
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
|
196 |
-
|
197 |
# Convert the numpy array to a PIL image
|
198 |
# pil_img = Image.fromarray(img)
|
199 |
# images.append(pil_img)
|
@@ -214,7 +227,7 @@ def frames_to_video(frames_folder, output_video_path, fps=7):
|
|
214 |
video.append(frame)
|
215 |
|
216 |
video = torch.stack(video)
|
217 |
-
video = rearrange(video,
|
218 |
torchvision.io.write_video(output_video_path, video, fps=fps)
|
219 |
|
220 |
|
@@ -222,11 +235,12 @@ def save_gifs_side_by_side(
|
|
222 |
batch_output,
|
223 |
validation_control_images,
|
224 |
output_folder,
|
225 |
-
target_size=(512
|
226 |
duration=200,
|
227 |
point_tracks=None,
|
228 |
):
|
229 |
flattened_batch_output = batch_output
|
|
|
230 |
def create_gif(image_list, gif_path, duration=100):
|
231 |
pil_images = [validate_and_convert_image(img, target_size=target_size) for img in image_list]
|
232 |
pil_images = [img for img in pil_images if img is not None]
|
@@ -242,7 +256,7 @@ def save_gifs_side_by_side(
|
|
242 |
tmp_frame_path = os.path.join(tmp_folder, f"{idx}.png")
|
243 |
pil_image.save(tmp_frame_path)
|
244 |
tmp_frame_list.append(tmp_frame_path)
|
245 |
-
|
246 |
# also save as mp4
|
247 |
output_video_path = gif_path.replace(".gif", ".mp4")
|
248 |
frames_to_video(tmp_folder, output_video_path, fps=7)
|
@@ -285,25 +299,25 @@ def save_gifs_side_by_side(
|
|
285 |
if output_path.endswith(".mp4"):
|
286 |
video = [torchvision.transforms.functional.pil_to_tensor(frame) for frame in frames]
|
287 |
video = torch.stack(video)
|
288 |
-
video = rearrange(video,
|
289 |
torchvision.io.write_video(output_path, video, fps=7)
|
290 |
print(f"Saved video to {output_path}")
|
291 |
else:
|
292 |
frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration)
|
293 |
-
|
294 |
# Helper function to concatenate images horizontally
|
295 |
def get_concat_h(im1, im2, gap=10):
|
296 |
# # img first, heatmap second
|
297 |
# im1, im2 = im2, im1
|
298 |
|
299 |
-
dst = Image.new(
|
300 |
dst.paste(im1, (0, 0))
|
301 |
dst.paste(im2, (im1.width + gap, 0))
|
302 |
return dst
|
303 |
|
304 |
# Helper function to concatenate images vertically
|
305 |
def get_concat_v(im1, im2):
|
306 |
-
dst = Image.new(
|
307 |
dst.paste(im1, (0, 0))
|
308 |
dst.paste(im2, (0, im1.height))
|
309 |
return dst
|
@@ -324,7 +338,7 @@ def save_gifs_side_by_side(
|
|
324 |
|
325 |
|
326 |
# Define functions
|
327 |
-
def validate_and_convert_image(image, target_size=(512
|
328 |
if image is None:
|
329 |
print("Encountered a None image")
|
330 |
return None
|
@@ -345,7 +359,7 @@ def validate_and_convert_image(image, target_size=(512 , 512)):
|
|
345 |
else:
|
346 |
print("Image is not a PIL Image or a PyTorch tensor")
|
347 |
return None
|
348 |
-
|
349 |
return image
|
350 |
|
351 |
|
@@ -371,19 +385,21 @@ class Drag:
|
|
371 |
|
372 |
if is_xformers_available():
|
373 |
import xformers
|
|
|
374 |
xformers_version = version.parse(xformers.__version__)
|
375 |
unet.enable_xformers_memory_efficient_attention()
|
376 |
# controlnet.enable_xformers_memory_efficient_attention()
|
377 |
else:
|
378 |
-
raise ValueError(
|
379 |
-
"xformers is not available. Make sure it is installed correctly")
|
380 |
|
381 |
pipe = StableVideoDiffusionInterpControlPipeline.from_pretrained(
|
382 |
"checkpoints/stable-video-diffusion-img2vid-xt",
|
383 |
unet=unet,
|
384 |
controlnet=controlnet,
|
385 |
low_cpu_mem_usage=False,
|
386 |
-
torch_dtype=torch.float16,
|
|
|
|
|
387 |
)
|
388 |
pipe.to(device)
|
389 |
|
@@ -397,18 +413,18 @@ class Drag:
|
|
397 |
self.use_sift = use_sift
|
398 |
|
399 |
@spaces.GPU
|
400 |
-
def run(self, first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id):
|
401 |
original_width, original_height = 512, 320 # TODO
|
402 |
|
403 |
# load_image
|
404 |
-
image = Image.open(first_frame_path).convert(
|
405 |
width, height = image.size
|
406 |
image = image.resize((self.width, self.height))
|
407 |
|
408 |
-
image_end = Image.open(last_frame_path).convert(
|
409 |
image_end = image_end.resize((self.width, self.height))
|
410 |
|
411 |
-
input_all_points = tracking_points.constructor_args[
|
412 |
|
413 |
sift_track_update = False
|
414 |
anchor_points_flag = None
|
@@ -417,11 +433,10 @@ class Drag:
|
|
417 |
sift_track_update = True
|
418 |
controlnet_cond_scale = 0.5
|
419 |
|
420 |
-
from models_diffusers.sift_match import
|
421 |
-
interpolate_trajectory as sift_interpolate_trajectory
|
422 |
from models_diffusers.sift_match import sift_match
|
423 |
|
424 |
-
output_file_sift = os.path.join(args.output_dir,
|
425 |
|
426 |
# (f, topk, 2), f=2 (before interpolation)
|
427 |
pred_tracks = sift_match(
|
@@ -446,9 +461,12 @@ class Drag:
|
|
446 |
else:
|
447 |
|
448 |
resized_all_points = [
|
449 |
-
tuple(
|
450 |
-
|
451 |
-
|
|
|
|
|
|
|
452 |
for e in input_all_points
|
453 |
]
|
454 |
|
@@ -460,12 +478,12 @@ class Drag:
|
|
460 |
warnings.warn("running without point trajectory control")
|
461 |
continue
|
462 |
|
463 |
-
if len(splited_track) == 1:
|
464 |
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
|
465 |
splited_track = tuple([splited_track[0], displacement_point])
|
466 |
# interpolate the track
|
467 |
splited_track = interpolate_trajectory(splited_track, self.model_length)
|
468 |
-
splited_track = splited_track[:self.model_length]
|
469 |
resized_all_points[idx] = splited_track
|
470 |
|
471 |
pred_tracks = torch.tensor(resized_all_points) # (num_points, num_frames, 2)
|
@@ -498,7 +516,7 @@ class Drag:
|
|
498 |
num_frames=14,
|
499 |
width=width,
|
500 |
height=height,
|
501 |
-
# decode_chunk_size=8,
|
502 |
# generator=generator,
|
503 |
motion_bucket_id=motion_bucket_id,
|
504 |
fps=7,
|
@@ -511,12 +529,12 @@ class Drag:
|
|
511 |
vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images]
|
512 |
vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images]
|
513 |
vis_images = [Image.fromarray(img) for img in vis_images]
|
514 |
-
|
515 |
# video_frames = [img for sublist in video_frames for img in sublist]
|
516 |
val_save_dir = os.path.join(args.output_dir, "vis_gif.gif")
|
517 |
save_gifs_side_by_side(
|
518 |
-
video_frames,
|
519 |
-
vis_images[:self.model_length],
|
520 |
val_save_dir,
|
521 |
target_size=(self.width, self.height),
|
522 |
duration=110,
|
@@ -545,7 +563,7 @@ def preprocess_image(image):
|
|
545 |
image_pil = image_pil.resize((512, 320), Image.BILINEAR)
|
546 |
|
547 |
first_frame_path = os.path.join(args.output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
|
548 |
-
|
549 |
image_pil.save(first_frame_path)
|
550 |
|
551 |
return first_frame_path, first_frame_path, gr.State([])
|
@@ -569,29 +587,42 @@ def preprocess_image_end(image_end):
|
|
569 |
|
570 |
|
571 |
def add_drag(tracking_points):
|
572 |
-
tracking_points.constructor_args[
|
573 |
return tracking_points
|
574 |
|
575 |
|
576 |
def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
577 |
-
tracking_points.constructor_args[
|
578 |
-
transparent_background = Image.open(first_frame_path).convert(
|
579 |
-
transparent_background_end = Image.open(last_frame_path).convert(
|
580 |
w, h = transparent_background.size
|
581 |
transparent_layer = np.zeros((h, w, 4))
|
582 |
|
583 |
-
for track in tracking_points.constructor_args[
|
584 |
if len(track) > 1:
|
585 |
-
for i in range(len(track)-1):
|
586 |
start_point = track[i]
|
587 |
-
end_point = track[i+1]
|
588 |
vx = end_point[0] - start_point[0]
|
589 |
vy = end_point[1] - start_point[1]
|
590 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
591 |
-
if i == len(track)-2:
|
592 |
-
cv2.arrowedLine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
593 |
else:
|
594 |
-
cv2.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
else:
|
596 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
597 |
|
@@ -603,24 +634,37 @@ def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
|
603 |
|
604 |
|
605 |
def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
606 |
-
tracking_points.constructor_args[
|
607 |
-
transparent_background = Image.open(first_frame_path).convert(
|
608 |
-
transparent_background_end = Image.open(last_frame_path).convert(
|
609 |
w, h = transparent_background.size
|
610 |
transparent_layer = np.zeros((h, w, 4))
|
611 |
|
612 |
-
for track in tracking_points.constructor_args[
|
613 |
if len(track) > 1:
|
614 |
-
for i in range(len(track)-1):
|
615 |
start_point = track[i]
|
616 |
-
end_point = track[i+1]
|
617 |
vx = end_point[0] - start_point[0]
|
618 |
vy = end_point[1] - start_point[1]
|
619 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
620 |
-
if i == len(track)-2:
|
621 |
-
cv2.arrowedLine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
else:
|
623 |
-
cv2.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
624 |
else:
|
625 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
626 |
|
@@ -631,34 +675,49 @@ def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
|
631 |
return tracking_points, trajectory_map, trajectory_map_end
|
632 |
|
633 |
|
634 |
-
def add_tracking_points(
|
|
|
|
|
635 |
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
636 |
-
tracking_points.constructor_args[
|
637 |
|
638 |
-
transparent_background = Image.open(first_frame_path).convert(
|
639 |
-
transparent_background_end = Image.open(last_frame_path).convert(
|
640 |
|
641 |
w, h = transparent_background.size
|
642 |
transparent_layer = 0
|
643 |
-
for idx, track in enumerate(tracking_points.constructor_args[
|
644 |
# mask = cv2.imread(
|
645 |
# os.path.join(args.output_dir, f"mask_{idx+1}.jpg")
|
646 |
# )
|
647 |
mask = np.zeros((320, 512, 3))
|
648 |
-
color = color_list[idx+1]
|
649 |
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
|
650 |
|
651 |
if len(track) > 1:
|
652 |
-
for i in range(len(track)-1):
|
653 |
start_point = track[i]
|
654 |
-
end_point = track[i+1]
|
655 |
vx = end_point[0] - start_point[0]
|
656 |
vy = end_point[1] - start_point[1]
|
657 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
658 |
-
if i == len(track)-2:
|
659 |
-
cv2.arrowedLine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
else:
|
661 |
-
cv2.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
else:
|
663 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
664 |
|
@@ -678,22 +737,25 @@ if __name__ == "__main__":
|
|
678 |
|
679 |
args = get_args()
|
680 |
ensure_dirname(args.output_dir)
|
681 |
-
|
682 |
color_list = []
|
683 |
for i in range(20):
|
684 |
-
color = np.concatenate([np.random.random(4)*255], axis=0)
|
685 |
color_list.append(color)
|
686 |
|
687 |
with gr.Blocks() as demo:
|
688 |
gr.Markdown("""<h1 align="center">Framer: Interactive Frame Interpolation</h1><br>""")
|
689 |
-
|
690 |
-
gr.Markdown(
|
|
|
691 |
Github Repo can be found at https://github.com/aim-uofa/Framer<br>
|
692 |
-
The template is inspired by DragAnything."""
|
693 |
-
|
|
|
694 |
gr.Image(label="Framer: Interactive Frame Interpolation", value="assets/demos.gif", height=432, width=768)
|
695 |
-
|
696 |
-
gr.Markdown(
|
|
|
697 |
1. Upload images<br>
|
698 |
  1.1 Upload the start image via the "Upload Start Image" button.<br>
|
699 |
  1.2. Upload the end image via the "Upload End Image" button.<br>
|
@@ -702,14 +764,15 @@ if __name__ == "__main__":
|
|
702 |
  2.2. You can click several points on either start or end image to forms a path.<br>
|
703 |
  2.3. Click "Delete last drag" to delete the whole lastest path.<br>
|
704 |
  2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
|
705 |
-
3. Interpolate the images (according the path) with a click on "Run" button. <br>"""
|
706 |
-
|
|
|
707 |
# device, args, height, width, model_length
|
708 |
Framer = Drag("cuda", args, 320, 512, 14)
|
709 |
first_frame_path = gr.State()
|
710 |
last_frame_path = gr.State()
|
711 |
tracking_points = gr.State([])
|
712 |
-
|
713 |
with gr.Row():
|
714 |
with gr.Column(scale=1):
|
715 |
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
|
@@ -720,7 +783,7 @@ if __name__ == "__main__":
|
|
720 |
run_button = gr.Button(value="Run")
|
721 |
delete_last_drag_button = gr.Button(value="Delete last drag")
|
722 |
delete_last_step_button = gr.Button(value="Delete last step")
|
723 |
-
|
724 |
with gr.Column(scale=7):
|
725 |
with gr.Row():
|
726 |
with gr.Column(scale=6):
|
@@ -731,7 +794,7 @@ if __name__ == "__main__":
|
|
731 |
width=512,
|
732 |
sources=[],
|
733 |
)
|
734 |
-
|
735 |
with gr.Column(scale=6):
|
736 |
input_image_end = gr.Image(
|
737 |
label="end frame",
|
@@ -740,36 +803,36 @@ if __name__ == "__main__":
|
|
740 |
width=512,
|
741 |
sources=[],
|
742 |
)
|
743 |
-
|
744 |
with gr.Row():
|
745 |
with gr.Column(scale=1):
|
746 |
-
|
747 |
controlnet_cond_scale = gr.Slider(
|
748 |
-
label=
|
749 |
-
minimum=0.0,
|
750 |
-
maximum=10,
|
751 |
-
step=0.1,
|
752 |
value=1.0,
|
753 |
)
|
754 |
-
|
755 |
motion_bucket_id = gr.Slider(
|
756 |
-
label=
|
757 |
-
minimum=1,
|
758 |
-
maximum=180,
|
759 |
-
step=1,
|
760 |
value=100,
|
761 |
)
|
762 |
-
|
763 |
with gr.Column(scale=5):
|
764 |
output_video = gr.Image(
|
765 |
label="Output Video",
|
766 |
height=320,
|
767 |
width=1152,
|
768 |
)
|
769 |
-
|
770 |
-
|
771 |
with gr.Row():
|
772 |
-
gr.Markdown(
|
|
|
773 |
## Citation
|
774 |
```bibtex
|
775 |
@article{wang2024framer,
|
@@ -779,24 +842,59 @@ if __name__ == "__main__":
|
|
779 |
year={2024}
|
780 |
}
|
781 |
```
|
782 |
-
"""
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
802 |
demo.launch()
|
|
|
19 |
|
20 |
from gradio_demo.utils_drag import *
|
21 |
from models_diffusers.controlnet_svd import ControlNetSVDModel
|
22 |
+
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
|
23 |
+
from pipelines.pipeline_stable_video_diffusion_interp_control import StableVideoDiffusionInterpControlPipeline
|
|
|
|
|
24 |
|
25 |
print("gr file", gr.__file__)
|
26 |
|
|
|
41 |
|
42 |
def get_args():
|
43 |
import argparse
|
44 |
+
|
45 |
parser = argparse.ArgumentParser()
|
46 |
|
47 |
parser.add_argument("--min_guidance_scale", type=float, default=1.0)
|
|
|
54 |
parser.add_argument(
|
55 |
"--dataset",
|
56 |
type=str,
|
57 |
+
default="videoswap",
|
58 |
)
|
59 |
|
60 |
parser.add_argument(
|
61 |
+
"--model",
|
62 |
+
type=str,
|
63 |
default="checkpoints/framer_512x320",
|
64 |
help="Path to model.",
|
65 |
)
|
|
|
112 |
|
113 |
def gen_gaussian_heatmap(imgSize=200):
|
114 |
circle_img = np.zeros((imgSize, imgSize), np.float32)
|
115 |
+
circle_mask = cv2.circle(circle_img, (imgSize // 2, imgSize // 2), imgSize // 2, 1, -1)
|
116 |
|
117 |
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
|
118 |
|
119 |
for i in range(imgSize):
|
120 |
for j in range(imgSize):
|
121 |
+
isotropicGrayscaleImage[i, j] = (
|
122 |
+
1
|
123 |
+
/ 2
|
124 |
+
/ np.pi
|
125 |
+
/ (40**2)
|
126 |
+
* np.exp(-1 / 2 * ((i - imgSize / 2) ** 2 / (40**2) + (j - imgSize / 2) ** 2 / (40**2)))
|
127 |
+
)
|
128 |
|
129 |
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
|
130 |
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
|
131 |
+
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage) * 255).astype(np.uint8)
|
132 |
|
133 |
return isotropicGrayscaleImage
|
134 |
|
135 |
|
136 |
def get_vis_image(
|
137 |
+
target_size=(512, 512),
|
138 |
+
points=None,
|
139 |
+
side=20,
|
140 |
+
num_frames=14,
|
141 |
+
# original_size=(512 , 512), args="", first_frame=None, is_mask = False, model_id=None,
|
142 |
+
):
|
143 |
|
144 |
# images = []
|
145 |
vis_images = []
|
|
|
147 |
|
148 |
trajectory_list = []
|
149 |
radius_list = []
|
150 |
+
|
151 |
for index, point in enumerate(points):
|
152 |
trajectories = [[int(i[0]), int(i[1])] for i in point]
|
153 |
trajectory_list.append(trajectories)
|
154 |
|
155 |
radius = 20
|
156 |
+
radius_list.append(radius)
|
157 |
|
158 |
if len(trajectory_list) == 0:
|
159 |
vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)]
|
|
|
163 |
new_img = np.zeros(target_size, np.uint8)
|
164 |
vis_img = new_img.copy()
|
165 |
# ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
|
166 |
+
|
167 |
if idxx >= args.num_frames:
|
168 |
break
|
169 |
|
170 |
# for cc, (mask, trajectory, radius) in enumerate(zip(mask_list, trajectory_list, radius_list)):
|
171 |
for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)):
|
172 |
+
|
173 |
center_coordinate = trajectory[idxx]
|
174 |
trajectory_ = trajectory[:idxx]
|
175 |
side = min(radius, 50)
|
176 |
+
|
177 |
+
y1 = max(center_coordinate[1] - side, 0)
|
178 |
y2 = min(center_coordinate[1] + side, target_size[0] - 1)
|
179 |
x1 = max(center_coordinate[0] - side, 0)
|
180 |
x2 = min(center_coordinate[0] + side, target_size[1] - 1)
|
181 |
+
|
182 |
+
if x2 - x1 > 3 and y2 - y1 > 3:
|
183 |
+
need_map = cv2.resize(heatmap, (x2 - x1, y2 - y1))
|
184 |
new_img[y1:y2, x1:x2] = need_map.copy()
|
185 |
+
|
186 |
if cc >= 0:
|
187 |
+
vis_img[y1:y2, x1:x2] = need_map.copy()
|
188 |
if len(trajectory_) == 1:
|
189 |
vis_img[trajectory_[0][1], trajectory_[0][0]] = 255
|
190 |
else:
|
191 |
+
for itt in range(len(trajectory_) - 1):
|
192 |
+
cv2.line(
|
193 |
+
vis_img,
|
194 |
+
(trajectory_[itt][0], trajectory_[itt][1]),
|
195 |
+
(trajectory_[itt + 1][0], trajectory_[itt + 1][1]),
|
196 |
+
(255, 255, 255),
|
197 |
+
3,
|
198 |
+
)
|
199 |
|
200 |
img = new_img
|
201 |
|
|
|
206 |
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format
|
207 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
208 |
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
|
209 |
+
|
210 |
# Convert the numpy array to a PIL image
|
211 |
# pil_img = Image.fromarray(img)
|
212 |
# images.append(pil_img)
|
|
|
227 |
video.append(frame)
|
228 |
|
229 |
video = torch.stack(video)
|
230 |
+
video = rearrange(video, "T C H W -> T H W C")
|
231 |
torchvision.io.write_video(output_video_path, video, fps=fps)
|
232 |
|
233 |
|
|
|
235 |
batch_output,
|
236 |
validation_control_images,
|
237 |
output_folder,
|
238 |
+
target_size=(512, 512),
|
239 |
duration=200,
|
240 |
point_tracks=None,
|
241 |
):
|
242 |
flattened_batch_output = batch_output
|
243 |
+
|
244 |
def create_gif(image_list, gif_path, duration=100):
|
245 |
pil_images = [validate_and_convert_image(img, target_size=target_size) for img in image_list]
|
246 |
pil_images = [img for img in pil_images if img is not None]
|
|
|
256 |
tmp_frame_path = os.path.join(tmp_folder, f"{idx}.png")
|
257 |
pil_image.save(tmp_frame_path)
|
258 |
tmp_frame_list.append(tmp_frame_path)
|
259 |
+
|
260 |
# also save as mp4
|
261 |
output_video_path = gif_path.replace(".gif", ".mp4")
|
262 |
frames_to_video(tmp_folder, output_video_path, fps=7)
|
|
|
299 |
if output_path.endswith(".mp4"):
|
300 |
video = [torchvision.transforms.functional.pil_to_tensor(frame) for frame in frames]
|
301 |
video = torch.stack(video)
|
302 |
+
video = rearrange(video, "T C H W -> T H W C")
|
303 |
torchvision.io.write_video(output_path, video, fps=7)
|
304 |
print(f"Saved video to {output_path}")
|
305 |
else:
|
306 |
frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration)
|
307 |
+
|
308 |
# Helper function to concatenate images horizontally
|
309 |
def get_concat_h(im1, im2, gap=10):
|
310 |
# # img first, heatmap second
|
311 |
# im1, im2 = im2, im1
|
312 |
|
313 |
+
dst = Image.new("RGB", (im1.width + im2.width + gap, max(im1.height, im2.height)), (255, 255, 255))
|
314 |
dst.paste(im1, (0, 0))
|
315 |
dst.paste(im2, (im1.width + gap, 0))
|
316 |
return dst
|
317 |
|
318 |
# Helper function to concatenate images vertically
|
319 |
def get_concat_v(im1, im2):
|
320 |
+
dst = Image.new("RGB", (max(im1.width, im2.width), im1.height + im2.height))
|
321 |
dst.paste(im1, (0, 0))
|
322 |
dst.paste(im2, (0, im1.height))
|
323 |
return dst
|
|
|
338 |
|
339 |
|
340 |
# Define functions
|
341 |
+
def validate_and_convert_image(image, target_size=(512, 512)):
|
342 |
if image is None:
|
343 |
print("Encountered a None image")
|
344 |
return None
|
|
|
359 |
else:
|
360 |
print("Image is not a PIL Image or a PyTorch tensor")
|
361 |
return None
|
362 |
+
|
363 |
return image
|
364 |
|
365 |
|
|
|
385 |
|
386 |
if is_xformers_available():
|
387 |
import xformers
|
388 |
+
|
389 |
xformers_version = version.parse(xformers.__version__)
|
390 |
unet.enable_xformers_memory_efficient_attention()
|
391 |
# controlnet.enable_xformers_memory_efficient_attention()
|
392 |
else:
|
393 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
|
|
394 |
|
395 |
pipe = StableVideoDiffusionInterpControlPipeline.from_pretrained(
|
396 |
"checkpoints/stable-video-diffusion-img2vid-xt",
|
397 |
unet=unet,
|
398 |
controlnet=controlnet,
|
399 |
low_cpu_mem_usage=False,
|
400 |
+
torch_dtype=torch.float16,
|
401 |
+
variant="fp16",
|
402 |
+
local_files_only=True,
|
403 |
)
|
404 |
pipe.to(device)
|
405 |
|
|
|
413 |
self.use_sift = use_sift
|
414 |
|
415 |
@spaces.GPU
|
416 |
+
def run(self, first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id):
|
417 |
original_width, original_height = 512, 320 # TODO
|
418 |
|
419 |
# load_image
|
420 |
+
image = Image.open(first_frame_path).convert("RGB")
|
421 |
width, height = image.size
|
422 |
image = image.resize((self.width, self.height))
|
423 |
|
424 |
+
image_end = Image.open(last_frame_path).convert("RGB")
|
425 |
image_end = image_end.resize((self.width, self.height))
|
426 |
|
427 |
+
input_all_points = tracking_points.constructor_args["value"]
|
428 |
|
429 |
sift_track_update = False
|
430 |
anchor_points_flag = None
|
|
|
433 |
sift_track_update = True
|
434 |
controlnet_cond_scale = 0.5
|
435 |
|
436 |
+
from models_diffusers.sift_match import interpolate_trajectory as sift_interpolate_trajectory
|
|
|
437 |
from models_diffusers.sift_match import sift_match
|
438 |
|
439 |
+
output_file_sift = os.path.join(args.output_dir, "sift.png")
|
440 |
|
441 |
# (f, topk, 2), f=2 (before interpolation)
|
442 |
pred_tracks = sift_match(
|
|
|
461 |
else:
|
462 |
|
463 |
resized_all_points = [
|
464 |
+
tuple(
|
465 |
+
[
|
466 |
+
tuple([int(e1[0] * self.width / original_width), int(e1[1] * self.height / original_height)])
|
467 |
+
for e1 in e
|
468 |
+
]
|
469 |
+
)
|
470 |
for e in input_all_points
|
471 |
]
|
472 |
|
|
|
478 |
warnings.warn("running without point trajectory control")
|
479 |
continue
|
480 |
|
481 |
+
if len(splited_track) == 1: # stationary point
|
482 |
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
|
483 |
splited_track = tuple([splited_track[0], displacement_point])
|
484 |
# interpolate the track
|
485 |
splited_track = interpolate_trajectory(splited_track, self.model_length)
|
486 |
+
splited_track = splited_track[: self.model_length]
|
487 |
resized_all_points[idx] = splited_track
|
488 |
|
489 |
pred_tracks = torch.tensor(resized_all_points) # (num_points, num_frames, 2)
|
|
|
516 |
num_frames=14,
|
517 |
width=width,
|
518 |
height=height,
|
519 |
+
# decode_chunk_size=8,
|
520 |
# generator=generator,
|
521 |
motion_bucket_id=motion_bucket_id,
|
522 |
fps=7,
|
|
|
529 |
vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images]
|
530 |
vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images]
|
531 |
vis_images = [Image.fromarray(img) for img in vis_images]
|
532 |
+
|
533 |
# video_frames = [img for sublist in video_frames for img in sublist]
|
534 |
val_save_dir = os.path.join(args.output_dir, "vis_gif.gif")
|
535 |
save_gifs_side_by_side(
|
536 |
+
video_frames,
|
537 |
+
vis_images[: self.model_length],
|
538 |
val_save_dir,
|
539 |
target_size=(self.width, self.height),
|
540 |
duration=110,
|
|
|
563 |
image_pil = image_pil.resize((512, 320), Image.BILINEAR)
|
564 |
|
565 |
first_frame_path = os.path.join(args.output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
|
566 |
+
|
567 |
image_pil.save(first_frame_path)
|
568 |
|
569 |
return first_frame_path, first_frame_path, gr.State([])
|
|
|
587 |
|
588 |
|
589 |
def add_drag(tracking_points):
|
590 |
+
tracking_points.constructor_args["value"].append([])
|
591 |
return tracking_points
|
592 |
|
593 |
|
594 |
def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
595 |
+
tracking_points.constructor_args["value"].pop()
|
596 |
+
transparent_background = Image.open(first_frame_path).convert("RGBA")
|
597 |
+
transparent_background_end = Image.open(last_frame_path).convert("RGBA")
|
598 |
w, h = transparent_background.size
|
599 |
transparent_layer = np.zeros((h, w, 4))
|
600 |
|
601 |
+
for track in tracking_points.constructor_args["value"]:
|
602 |
if len(track) > 1:
|
603 |
+
for i in range(len(track) - 1):
|
604 |
start_point = track[i]
|
605 |
+
end_point = track[i + 1]
|
606 |
vx = end_point[0] - start_point[0]
|
607 |
vy = end_point[1] - start_point[1]
|
608 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
609 |
+
if i == len(track) - 2:
|
610 |
+
cv2.arrowedLine(
|
611 |
+
transparent_layer,
|
612 |
+
tuple(start_point),
|
613 |
+
tuple(end_point),
|
614 |
+
(255, 0, 0, 255),
|
615 |
+
2,
|
616 |
+
tipLength=8 / arrow_length,
|
617 |
+
)
|
618 |
else:
|
619 |
+
cv2.line(
|
620 |
+
transparent_layer,
|
621 |
+
tuple(start_point),
|
622 |
+
tuple(end_point),
|
623 |
+
(255, 0, 0, 255),
|
624 |
+
2,
|
625 |
+
)
|
626 |
else:
|
627 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
628 |
|
|
|
634 |
|
635 |
|
636 |
def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
637 |
+
tracking_points.constructor_args["value"][-1].pop()
|
638 |
+
transparent_background = Image.open(first_frame_path).convert("RGBA")
|
639 |
+
transparent_background_end = Image.open(last_frame_path).convert("RGBA")
|
640 |
w, h = transparent_background.size
|
641 |
transparent_layer = np.zeros((h, w, 4))
|
642 |
|
643 |
+
for track in tracking_points.constructor_args["value"]:
|
644 |
if len(track) > 1:
|
645 |
+
for i in range(len(track) - 1):
|
646 |
start_point = track[i]
|
647 |
+
end_point = track[i + 1]
|
648 |
vx = end_point[0] - start_point[0]
|
649 |
vy = end_point[1] - start_point[1]
|
650 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
651 |
+
if i == len(track) - 2:
|
652 |
+
cv2.arrowedLine(
|
653 |
+
transparent_layer,
|
654 |
+
tuple(start_point),
|
655 |
+
tuple(end_point),
|
656 |
+
(255, 0, 0, 255),
|
657 |
+
2,
|
658 |
+
tipLength=8 / arrow_length,
|
659 |
+
)
|
660 |
else:
|
661 |
+
cv2.line(
|
662 |
+
transparent_layer,
|
663 |
+
tuple(start_point),
|
664 |
+
tuple(end_point),
|
665 |
+
(255, 0, 0, 255),
|
666 |
+
2,
|
667 |
+
)
|
668 |
else:
|
669 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
670 |
|
|
|
675 |
return tracking_points, trajectory_map, trajectory_map_end
|
676 |
|
677 |
|
678 |
+
def add_tracking_points(
|
679 |
+
tracking_points, first_frame_path, last_frame_path, evt: gr.SelectData
|
680 |
+
): # SelectData is a subclass of EventData
|
681 |
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
682 |
+
tracking_points.constructor_args["value"][-1].append(evt.index)
|
683 |
|
684 |
+
transparent_background = Image.open(first_frame_path).convert("RGBA")
|
685 |
+
transparent_background_end = Image.open(last_frame_path).convert("RGBA")
|
686 |
|
687 |
w, h = transparent_background.size
|
688 |
transparent_layer = 0
|
689 |
+
for idx, track in enumerate(tracking_points.constructor_args["value"]):
|
690 |
# mask = cv2.imread(
|
691 |
# os.path.join(args.output_dir, f"mask_{idx+1}.jpg")
|
692 |
# )
|
693 |
mask = np.zeros((320, 512, 3))
|
694 |
+
color = color_list[idx + 1]
|
695 |
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
|
696 |
|
697 |
if len(track) > 1:
|
698 |
+
for i in range(len(track) - 1):
|
699 |
start_point = track[i]
|
700 |
+
end_point = track[i + 1]
|
701 |
vx = end_point[0] - start_point[0]
|
702 |
vy = end_point[1] - start_point[1]
|
703 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
704 |
+
if i == len(track) - 2:
|
705 |
+
cv2.arrowedLine(
|
706 |
+
transparent_layer,
|
707 |
+
tuple(start_point),
|
708 |
+
tuple(end_point),
|
709 |
+
(255, 0, 0, 255),
|
710 |
+
2,
|
711 |
+
tipLength=8 / arrow_length,
|
712 |
+
)
|
713 |
else:
|
714 |
+
cv2.line(
|
715 |
+
transparent_layer,
|
716 |
+
tuple(start_point),
|
717 |
+
tuple(end_point),
|
718 |
+
(255, 0, 0, 255),
|
719 |
+
2,
|
720 |
+
)
|
721 |
else:
|
722 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
723 |
|
|
|
737 |
|
738 |
args = get_args()
|
739 |
ensure_dirname(args.output_dir)
|
740 |
+
|
741 |
color_list = []
|
742 |
for i in range(20):
|
743 |
+
color = np.concatenate([np.random.random(4) * 255], axis=0)
|
744 |
color_list.append(color)
|
745 |
|
746 |
with gr.Blocks() as demo:
|
747 |
gr.Markdown("""<h1 align="center">Framer: Interactive Frame Interpolation</h1><br>""")
|
748 |
+
|
749 |
+
gr.Markdown(
|
750 |
+
"""Gradio Demo for <a href='https://arxiv.org/abs/2410.18978'><b>Framer: Interactive Frame Interpolation</b></a>.<br>
|
751 |
Github Repo can be found at https://github.com/aim-uofa/Framer<br>
|
752 |
+
The template is inspired by DragAnything."""
|
753 |
+
)
|
754 |
+
|
755 |
gr.Image(label="Framer: Interactive Frame Interpolation", value="assets/demos.gif", height=432, width=768)
|
756 |
+
|
757 |
+
gr.Markdown(
|
758 |
+
"""## Usage: <br>
|
759 |
1. Upload images<br>
|
760 |
  1.1 Upload the start image via the "Upload Start Image" button.<br>
|
761 |
  1.2. Upload the end image via the "Upload End Image" button.<br>
|
|
|
764 |
  2.2. You can click several points on either start or end image to forms a path.<br>
|
765 |
  2.3. Click "Delete last drag" to delete the whole lastest path.<br>
|
766 |
  2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
|
767 |
+
3. Interpolate the images (according the path) with a click on "Run" button. <br>"""
|
768 |
+
)
|
769 |
+
|
770 |
# device, args, height, width, model_length
|
771 |
Framer = Drag("cuda", args, 320, 512, 14)
|
772 |
first_frame_path = gr.State()
|
773 |
last_frame_path = gr.State()
|
774 |
tracking_points = gr.State([])
|
775 |
+
|
776 |
with gr.Row():
|
777 |
with gr.Column(scale=1):
|
778 |
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
|
|
|
783 |
run_button = gr.Button(value="Run")
|
784 |
delete_last_drag_button = gr.Button(value="Delete last drag")
|
785 |
delete_last_step_button = gr.Button(value="Delete last step")
|
786 |
+
|
787 |
with gr.Column(scale=7):
|
788 |
with gr.Row():
|
789 |
with gr.Column(scale=6):
|
|
|
794 |
width=512,
|
795 |
sources=[],
|
796 |
)
|
797 |
+
|
798 |
with gr.Column(scale=6):
|
799 |
input_image_end = gr.Image(
|
800 |
label="end frame",
|
|
|
803 |
width=512,
|
804 |
sources=[],
|
805 |
)
|
806 |
+
|
807 |
with gr.Row():
|
808 |
with gr.Column(scale=1):
|
809 |
+
|
810 |
controlnet_cond_scale = gr.Slider(
|
811 |
+
label="Control Scale",
|
812 |
+
minimum=0.0,
|
813 |
+
maximum=10,
|
814 |
+
step=0.1,
|
815 |
value=1.0,
|
816 |
)
|
817 |
+
|
818 |
motion_bucket_id = gr.Slider(
|
819 |
+
label="Motion Bucket",
|
820 |
+
minimum=1,
|
821 |
+
maximum=180,
|
822 |
+
step=1,
|
823 |
value=100,
|
824 |
)
|
825 |
+
|
826 |
with gr.Column(scale=5):
|
827 |
output_video = gr.Image(
|
828 |
label="Output Video",
|
829 |
height=320,
|
830 |
width=1152,
|
831 |
)
|
832 |
+
|
|
|
833 |
with gr.Row():
|
834 |
+
gr.Markdown(
|
835 |
+
"""
|
836 |
## Citation
|
837 |
```bibtex
|
838 |
@article{wang2024framer,
|
|
|
842 |
year={2024}
|
843 |
}
|
844 |
```
|
845 |
+
"""
|
846 |
+
)
|
847 |
+
|
848 |
+
image_upload_button.upload(
|
849 |
+
preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points]
|
850 |
+
)
|
851 |
+
|
852 |
+
image_end_upload_button.upload(
|
853 |
+
preprocess_image_end, image_end_upload_button, [input_image_end, last_frame_path, tracking_points]
|
854 |
+
)
|
855 |
+
|
856 |
+
add_drag_button.click(
|
857 |
+
add_drag,
|
858 |
+
tracking_points,
|
859 |
+
[
|
860 |
+
tracking_points,
|
861 |
+
],
|
862 |
+
)
|
863 |
+
|
864 |
+
delete_last_drag_button.click(
|
865 |
+
delete_last_drag,
|
866 |
+
[tracking_points, first_frame_path, last_frame_path],
|
867 |
+
[tracking_points, input_image, input_image_end],
|
868 |
+
)
|
869 |
+
|
870 |
+
delete_last_step_button.click(
|
871 |
+
delete_last_step,
|
872 |
+
[tracking_points, first_frame_path, last_frame_path],
|
873 |
+
[tracking_points, input_image, input_image_end],
|
874 |
+
)
|
875 |
+
|
876 |
+
reset_button.click(
|
877 |
+
reset_states,
|
878 |
+
[first_frame_path, last_frame_path, tracking_points],
|
879 |
+
[first_frame_path, last_frame_path, tracking_points],
|
880 |
+
)
|
881 |
+
|
882 |
+
input_image.select(
|
883 |
+
add_tracking_points,
|
884 |
+
[tracking_points, first_frame_path, last_frame_path],
|
885 |
+
[tracking_points, input_image, input_image_end],
|
886 |
+
)
|
887 |
+
|
888 |
+
input_image_end.select(
|
889 |
+
add_tracking_points,
|
890 |
+
[tracking_points, first_frame_path, last_frame_path],
|
891 |
+
[tracking_points, input_image, input_image_end],
|
892 |
+
)
|
893 |
+
|
894 |
+
run_button.click(
|
895 |
+
Framer.run,
|
896 |
+
[first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id],
|
897 |
+
output_video,
|
898 |
+
)
|
899 |
+
|
900 |
demo.launch()
|