r1-agents / app.py
wuhp's picture
Update app.py
6a12f54 verified
raw
history blame
8.56 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import spaces # Import the spaces library
# Model IDs from Hugging Face Hub (Fixed to 7B and 32B Unsloth)
model_ids = {
"7B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
"32B-Unsloth": "unsloth/DeepSeek-R1-Distill-Qwen-32B-bnb-4bit", # Unsloth 32B model
}
models = {} # Keep models as a dictionary, but initially empty
tokenizers = {} # Keep tokenizers as a dictionary, initially empty
# BitsAndBytesConfig for 4-bit quantization (for the 32B model)
bnb_config_4bit = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16, # Or torch.float16 if needed
)
def get_model_and_tokenizer(size): # Function to load model on demand
if size not in models: # Load only if not already loaded
model_id = model_ids[size]
print(f"Loading {size} model: {model_id} on demand")
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
if size == "32B-Unsloth": # Apply 4-bit config for 32B model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config_4bit,
torch_dtype=torch.bfloat16, # Or torch.float16 if needed
device_map='auto',
trust_remote_code=True
)
else: # 7B model - standard loading
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # Or torch.float16 if needed
device_map='auto',
trust_remote_code=True
)
models[size] = model
tokenizers[size] = tokenizer
print(f"Loaded {size} model on demand.")
return models[size], tokenizers[size]
# Revised Default Prompts (as defined previously - these are still good)
default_prompt_1_5b = """**Code Analysis Task**
As a Senior Code Analyst, analyze this programming problem:
**User Request:**
{user_prompt}
**Relevant Context:**
{context_1_5b}
**Analysis Required:**
1. Briefly break down the problem, including key constraints and edge cases.
2. Suggest 2-3 potential approach options (algorithms/data structures).
3. Recommend ONE primary strategy and briefly justify your choice.
4. Provide a very brief initial pseudocode sketch of the core logic."""
default_prompt_7b = """**Code Implementation Task**
As a Principal Software Engineer, provide production-ready Streamlit/Python code based on this analysis:
**Initial Analysis:**
{response_1_5b}
**Relevant Context:**
{context_7b}
**Code Requirements:**
1. Generate concise, production-grade Python code for a Streamlit app.
2. Include necessary imports, UI elements, and basic functionality.
3. Add comments for clarity.
"""
# --- Shared Memory Implementation --- (Same)
shared_memory = []
def store_in_memory(memory_item):
shared_memory.append(memory_item)
print(f"\n[Memory Stored]: {memory_item[:50]}...")
def retrieve_from_memory(query, top_k=2):
relevant_memories = []
query_lower = query.lower()
for memory_item in shared_memory:
if query_lower in memory_item.lower():
relevant_memories.append(memory_item)
if not relevant_memories:
print("\n[Memory Retrieval]: No relevant memories found.")
return []
print(f"\n[Memory Retrieval]: Found {len(relevant_memories)} relevant memories.")
return relevant_memories[:top_k]
# --- Swarm Agent Function - Fixed Models (7B and 32B Unsloth) ---
@spaces.GPU # <---- GPU DECORATOR ADDED HERE!
def swarm_agent_sequential_rag(user_prompt, prompt_1_5b_template, prompt_7b_template, temperature=0.5, top_p=0.9, max_new_tokens=300): # Removed final_model_size
global shared_memory
shared_memory = [] # Clear memory for each new request
print(f"\n--- Swarm Agent Processing with Shared Memory (RAG) - GPU ACCELERATED - Final Model: 32B Unsloth ---") # Updated message
# 7B Model - Brainstorming/Initial Draft (Lazy Load and get model)
print("\n[7B Model - Brainstorming] - GPU Accelerated") # Now 7B is brainstorming
model_7b, tokenizer_7b = get_model_and_tokenizer("7B") # Lazy load 7B
retrieved_memory_7b = retrieve_from_memory(user_prompt)
context_7b = "\n".join([f"- {mem}" for mem in retrieved_memory_7b]) if retrieved_memory_7b else "No relevant context found in memory."
# Use user-provided prompt template for 7B model (as brainstorming model now)
prompt_7b_brainstorm = prompt_1_5b_template.format(user_prompt=user_prompt, context_1_5b=context_7b) # Reusing 1.5B template - adjust if needed
input_ids_7b = tokenizer_7b.encode(prompt_7b_brainstorm, return_tensors="pt").to(model_7b.device)
output_7b = model_7b.generate(
input_ids_7b,
max_new_tokens=max_new_tokens, # Use user-defined max_new_tokens
temperature=temperature, # Use user-defined temperature
top_p=top_p, # Use user-defined top_p
do_sample=True
)
response_7b = tokenizer_7b.decode(output_7b[0], skip_special_tokens=True)
print(f"7B Response (Brainstorming):\n{response_7b}") # Updated message
store_in_memory(f"7B Model Initial Response: {response_7b[:200]}...")
# 32B Unsloth Model - Final Code Generation (Lazy Load and get model)
final_model, final_tokenizer = get_model_and_tokenizer("32B-Unsloth") # Lazy load 32B Unsloth
print("\n[32B Unsloth Model - Final Code Generation] - GPU Accelerated") # Model-specific message
model_stage_name = "32B Unsloth Model - Final Code"
final_max_new_tokens = max_new_tokens + 200 # More tokens for 32B model
retrieved_memory_final = retrieve_from_memory(response_7b) # Memory from 7B brainstorm
context_final = "\n".join([f"- {mem}" for mem in retrieved_memory_final]) if retrieved_memory_final else "No relevant context found in memory."
# Use user-provided prompt template for final model (using 7B template)
prompt_final = prompt_7b_template.format(response_1_5b=response_7b, context_7b=context_final) # Using prompt_7b_template for final stage
input_ids_final = final_tokenizer.encode(prompt_final, return_tensors="pt").to(final_model.device)
output_final = final_model.generate(
input_ids_final,
max_new_tokens=final_max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
response_final = final_tokenizer.decode(output_final[0], skip_special_tokens=True)
print(f"{model_stage_name} Response:\n{response_final}")
store_in_memory(f"{model_stage_name} Response: {response_final[:200]}...")
return response_final # Returns final model's response
# --- Gradio ChatInterface --- (No Model Selection Dropdown anymore)
def gradio_interface(message, history, temp, top_p, max_tokens, prompt_1_5b_text, prompt_7b_text): # Removed final_model_selector
# history is automatically managed by ChatInterface
response = swarm_agent_sequential_rag(
message,
prompt_1_5b_template=prompt_1_5b_text, # Pass prompt templates
prompt_7b_template=prompt_7b_text,
temperature=temp,
top_p=top_p,
max_new_tokens=int(max_tokens) # Ensure max_tokens is an integer
)
return response
iface = gr.ChatInterface( # Using ChatInterface now
fn=gradio_interface,
# Define additional inputs for settings and prompts (NO model dropdown)
additional_inputs=[
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature"), # Lowered default temp to 0.5
gr.Slider(minimum=0.01, maximum=1.0, step=0.05, value=0.9, label="Top P"),
gr.Number(value=300, label="Max Tokens", precision=0), # Use Number for integer tokens
gr.Textbox(value=default_prompt_1_5b, lines=10, label="Brainstorming Model Prompt Template (7B Model)"), # Updated label - 7B now brainstormer
gr.Textbox(value=default_prompt_7b, lines=10, label="Code Generation Prompt Template (32B Unsloth Model)"), # Updated label - 32B is code generator
],
title="DeepSeek Agent Swarm Chat (ZeroGPU Demo - Fixed Models: 7B + 32B Unsloth)", # Updated title
description="Chat with a DeepSeek agent swarm (7B + 32B Unsloth) with shared memory, adjustable settings, **and customizable prompts!** **GPU accelerated using ZeroGPU!** (Requires Pro Space)", # Updated description
)
if __name__ == "__main__":
iface.launch() # Only launch locally if running this script directly