Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
#from requests import Request, Session | |
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects | |
import json | |
from typing import Dict, Any, Optional | |
from Gradio_UI import GradioUI | |
verbose = True | |
if verbose: print("Running app.py") | |
################### UTILITY ############################################### | |
def top_10_items_from_json(json_str: str) -> dict[str, int]: | |
# Parse the JSON string into a dictionary | |
data = json.loads(json_str) | |
# Sort the dictionary by value in descending order | |
sorted_items = sorted(data.items(), key=lambda item: item[1], reverse=True) | |
# Get the top 10 items | |
top_10 = sorted_items[:10] | |
# Convert the list of tuples back into a dictionary | |
top_10_dict = dict(top_10) | |
return top_10_dict | |
################### END: UTILITY ############################################### | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def my_custom_tool(arg1:str, arg2:int)-> str: #it's important to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
arg1: the first argument | |
arg2: the second argument | |
""" | |
return "What magic will you build ?" | |
def fetch_active_crypto() -> Optional[Dict[str, Any]]: | |
"""A tool that fetches all active crypto by market cap in USD. | |
Returns: | |
Optional[Dict[str, Any]]: A dictionary containing the top 10 cryptocurrencies by market cap, | |
or None if an error occurs. | |
""" | |
url = 'https://sandbox-api.coinmarketcap.com/v1/cryptocurrency/listings/latest' | |
parameters = { | |
'start': '1', | |
'limit': '5000', | |
'convert': 'USD' | |
} | |
headers = { | |
'Accepts': 'application/json', | |
'X-CMC_PRO_API_KEY': 'b54bcf4d-1bca-4e8e-9a24-22ff2c3d462c', | |
} | |
session = requests.Session() | |
session.headers.update(headers) | |
try: | |
response = session.get(url, params=parameters) | |
response.raise_for_status() # Raise an exception for HTTP errors | |
data = json.loads(response.text) | |
# Extract the top 10 cryptocurrencies by market cap | |
if 'data' in data: | |
sorted_crypto = sorted(data['data'], key=lambda x: x['quote']['USD']['market_cap'], reverse=True) | |
top_10 = sorted_crypto[:10] | |
return {crypto['name']: crypto['quote']['USD'] for crypto in top_10} | |
else: | |
print("No data found in the response.") | |
return None | |
except (ConnectionError, Timeout, TooManyRedirects, requests.exceptions.HTTPError) as e: | |
print(f"An error occurred: {e}") | |
return None | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
############# MODEL SELECTION ################################################ | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
# model = HfApiModel( | |
# max_tokens=2096, | |
# temperature=0.5, | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',# it is possible that this model may be overloaded | |
# custom_role_conversions=None, | |
# ) | |
MODEL_IDS = [ | |
#'https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud/', | |
#'https://jc26mwg228mkj8dw.us-east-1.aws.endpoints.huggingface.cloud/', | |
# 'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
#'meta-llama/Llama-3.2-1B-Instruct', ## Does a poor job of interpreting my questions and matching them to the tools | |
'Qwen/Qwen2.5-Coder-32B-Instruct', | |
'Qwen/Qwen2.5-Coder-14B-Instruct', | |
'Qwen/Qwen2.5-Coder-7B-Instruct', | |
'Qwen/Qwen2.5-Coder-3B-Instruct', | |
'Qwen/Qwen2.5-Coder-1.5B-Instruct' | |
# Add here wherever model is working for you | |
] | |
def is_model_overloaded(model_url): | |
"""Verify if the model is overloaded doing a test call.""" | |
try: | |
response = requests.post(model_url, json={"inputs": "Test"}) | |
if verbose: | |
print(response.status_code) | |
if response.status_code == 503: # 503 Service Unavailable = Overloaded | |
return True | |
if response.status_code == 404: # 404 Client Error: Not Found | |
return True | |
if response.status_code == 424: # 424 Client Error: Failed Dependency for url: | |
return True | |
return False | |
except requests.RequestException: | |
return True # if there are an error is overloaded | |
def get_available_model(): | |
"""Select the first model available from the list.""" | |
for model_url in MODEL_IDS: | |
print("trying",model_url) | |
if not is_model_overloaded(model_url): | |
return model_url | |
return MODEL_IDS[0] # if all are failing, use the first model by dfault | |
if verbose: print("Checking available models.") | |
selected_model_id = get_available_model() | |
model = HfApiModel( | |
max_tokens=1048, | |
temperature=0.5, | |
#model_id='meta-llama/Llama-3.2-1B-Instruct', | |
#model_id='Qwen/Qwen2.5-Coder-32B-Instruct', | |
#model_id = 'Qwen/Qwen2.5-Coder-1.5B-Instruct', | |
model_id = selected_model_id, # model available selected from the list automatically | |
custom_role_conversions=None, | |
) | |
############# END: MODEL SELECTION ################################################ | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, image_generation_tool, get_current_time_in_timezone, fetch_active_crypto], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |