RF-Solver-Edit / app.py
wjs0725's picture
Update app.py
d429710 verified
raw
history blame
9.57 kB
import os
import re
import time
from io import BytesIO
import uuid
from dataclasses import dataclass
from glob import iglob
import argparse
from einops import rearrange
from fire import Fire
from PIL import ExifTags, Image
import spaces
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from transformers import pipeline
from flux.sampling import denoise, get_schedule, prepare, unpack
from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5)
from huggingface_hub import login
login(token=os.getenv('Token'))
import torch
@dataclass
class SamplingOptions:
source_prompt: str
target_prompt: str
# prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
@torch.inference_mode()
def encode(init_image, torch_device):
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
init_image = init_image.unsqueeze(0)
init_image = init_image.to(torch_device)
with torch.no_grad():
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
return init_image
device = "cuda" if torch.cuda.is_available() else "cpu"
name = 'flux-dev'
ae = load_ae(name, device)
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
clip = load_clip(device)
model = load_flow_model(name, device=device)
offload = False
name = "flux-dev"
is_schnell = False
feature_path = 'feature'
output_dir = 'result'
add_sampling_metadata = True
@spaces.GPU(duration=120)
@torch.inference_mode()
def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.cuda.empty_cache()
seed = None
shape = init_image.shape
new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16
init_image = init_image[:new_h, :new_w, :]
width, height = init_image.shape[0], init_image.shape[1]
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
init_image = init_image.unsqueeze(0)
init_image = init_image.to(device)
with torch.no_grad():
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
print(init_image.shape)
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
source_prompt=source_prompt,
target_prompt=target_prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
opts.seed = torch.Generator(device="cpu").seed()
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
t0 = time.perf_counter()
opts.seed = None
#############inverse#######################
info = {}
info['feature'] = {}
info['inject_step'] = inject_step
with torch.no_grad():
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# inversion initial noise
with torch.no_grad():
z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
inp_target["img"] = z
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell"))
# denoise initial noise
x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)
# decode latents to pixel space
x = unpack(x.float(), opts.width, opts.height)
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
device = torch.device("cuda")
with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
x = ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
fn = output_name.format(idx=idx)
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
# bring into PIL format and save
x = x.clamp(-1, 1)
x = embed_watermark(x.float())
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
exif_data = Image.Exif()
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = source_prompt
# img.save(fn, exif=exif_data, quality=95, subsampling=0)
print("End Edit")
return img
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
is_schnell = model_name == "flux-schnell"
title = r"""
<h1 align="center">🪄 Taming Rectified Flow for Inversion and Editing</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/wangjiangshan0725/RF-Solver-Edit' target='_blank'><b>Taming Rectified Flow for Inversion and Editing</b></a>.<br>
❗️❗️❗️[<b>Important</b>] Editing steps:<br>
1️⃣ Upload images you want to edit (The resolution is expected be less than 1360*768, or the memory of GPU may be not enough.) <br>
2️⃣ Enter the source prompt, which describes the content of the image you unload. The source prompt is not mandatory; you can also leave it to null. <br>
3️⃣ Enter the target prompt which describes the expected content of the edited image. <br>
4️⃣ Click the <b>Generate</b> button to start editing. <br>
5️⃣ We suggest to adjust the value of **feature sharing steps** for better results.<br>
"""
article = r"""
If our work is helpful, please help to ⭐ the <a href='https://github.com/wangjiangshan0725/RF-Solver-Edit' target='_blank'>Github Repo</a>. Thanks!
"""
badge = r"""
[![GitHub Stars](https://img.shields.io/github/stars/wangjiangshan0725/RF-Solver-Edit?style=social)](https://github.com/wangjiangshan0725/RF-Solver-Edit)
"""
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
# gr.Markdown(f"# Official Demo for Taming Rectified Flow for Inversion and Editing")
gr.HTML(title)
gr.Markdown(description)
gr.Markdown(article)
gr.Markdown(badge)
with gr.Row():
with gr.Column():
source_prompt = gr.Textbox(label="Source Prompt", value="")
target_prompt = gr.Textbox(label="Target Prompt", value="")
# source_prompt = gr.Text(
# label="Source Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your source prompt",
# container=False,
# value=""
# )
# target_prompt = gr.Text(
# label="Target Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your target prompt",
# container=False,
# value=""
# )
init_image = gr.Image(label="Input Image", visible=True)
generate_btn = gr.Button("Generate")
with gr.Column():
with gr.Accordion("Advanced Options", open=True):
num_steps = gr.Slider(1, 30, 25, step=1, label="Total timesteps")
inject_step = gr.Slider(1, 15, 3, step=1, label="Feature sharing steps")
guidance = gr.Slider(1.0, 10.0, 2, step=0.1, label="Guidance", interactive=not is_schnell)
# seed = gr.Textbox(0, label="Seed (-1 for random)", visible=False)
# add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=False)
output_image = gr.Image(label="Generated Image")
generate_btn.click(
fn=edit,
inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance],
outputs=[output_image]
)
return demo
# if __name__ == "__main__":
# import argparse
# parser = argparse.ArgumentParser(description="Flux")
# parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
# parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
# parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
# parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
# parser.add_argument("--port", type=int, default=41035)
# args = parser.parse_args()
demo = create_demo("flux-dev", "cuda")
demo.launch()