Spaces:
Sleeping
Sleeping
wjbmattingly
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
import torch
|
4 |
-
import
|
5 |
-
import json
|
6 |
-
from PIL import Image, ImageDraw
|
7 |
-
import os
|
8 |
-
import tempfile
|
9 |
|
10 |
# Dictionary of model names and their corresponding HuggingFace model IDs
|
11 |
MODEL_OPTIONS = {
|
@@ -36,78 +32,93 @@ def load_model(model_name):
|
|
36 |
current_model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
37 |
current_model_name = model_name
|
38 |
|
39 |
-
# Move model to GPU
|
40 |
-
|
41 |
-
current_model = current_model.to(device)
|
42 |
|
43 |
return current_processor, current_model
|
44 |
|
|
|
45 |
def process_image(image, model_name):
|
46 |
-
# Save the uploaded image to a temporary file
|
47 |
-
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_img:
|
48 |
-
image.save(temp_img, format="JPEG")
|
49 |
-
temp_img_path = temp_img.name
|
50 |
-
|
51 |
-
# Run Kraken for line detection
|
52 |
-
lines_json_path = "lines.json"
|
53 |
-
kraken_command = f"kraken -i {temp_img_path} {lines_json_path} binarize segment -bl"
|
54 |
-
subprocess.run(kraken_command, shell=True, check=True)
|
55 |
-
|
56 |
-
# Load the lines from the JSON file
|
57 |
-
with open(lines_json_path, 'r') as f:
|
58 |
-
lines_data = json.load(f)
|
59 |
-
|
60 |
processor, model = load_model(model_name)
|
61 |
-
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Gradio interface
|
98 |
-
with gr.Blocks() as iface:
|
99 |
-
gr.Markdown("# Medieval
|
100 |
-
gr.Markdown("Upload an image of
|
101 |
|
102 |
with gr.Row():
|
103 |
-
input_image = gr.Image(type="pil", label="Input Image")
|
104 |
model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model", value="Medieval Base")
|
105 |
|
106 |
-
|
107 |
-
output_image = gr.Image(type="pil", label="Detected Lines")
|
108 |
-
transcription_output = gr.Textbox(label="Transcription", lines=10)
|
109 |
|
110 |
submit_button = gr.Button("Transcribe")
|
111 |
-
submit_button.click(fn=process_image, inputs=[input_image, model_dropdown], outputs=
|
|
|
|
|
112 |
|
113 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
import torch
|
4 |
+
import spaces
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Dictionary of model names and their corresponding HuggingFace model IDs
|
7 |
MODEL_OPTIONS = {
|
|
|
32 |
current_model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
33 |
current_model_name = model_name
|
34 |
|
35 |
+
# Move model to GPU
|
36 |
+
current_model = current_model.to('cuda')
|
|
|
37 |
|
38 |
return current_processor, current_model
|
39 |
|
40 |
+
@spaces.GPU
|
41 |
def process_image(image, model_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
processor, model = load_model(model_name)
|
43 |
+
|
44 |
+
# Prepare image
|
45 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
46 |
+
|
47 |
+
# Move input to GPU
|
48 |
+
pixel_values = pixel_values.to('cuda')
|
49 |
+
|
50 |
+
# Generate (no beam search)
|
51 |
+
with torch.no_grad():
|
52 |
+
generated_ids = model.generate(pixel_values)
|
53 |
+
|
54 |
+
# Decode
|
55 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
56 |
+
return generated_text
|
57 |
+
|
58 |
+
# Base URL for the images
|
59 |
+
base_url = "https://huggingface.co/medieval-data/trocr-medieval-base/resolve/main/images/"
|
60 |
+
|
61 |
+
# List of example images and their corresponding models
|
62 |
+
examples = [
|
63 |
+
[f"{base_url}caroline-1.png", "Medieval Latin Caroline"],
|
64 |
+
[f"{base_url}caroline-2.png", "Medieval Latin Caroline"],
|
65 |
+
[f"{base_url}cursiva-1.png", "Medieval Cursiva"],
|
66 |
+
[f"{base_url}cursiva-2.png", "Medieval Cursiva"],
|
67 |
+
[f"{base_url}cursiva-3.png", "Medieval Cursiva"],
|
68 |
+
[f"{base_url}humanistica-1.png", "Medieval Humanistica"],
|
69 |
+
[f"{base_url}humanistica-2.png", "Medieval Humanistica"],
|
70 |
+
[f"{base_url}humanistica-3.png", "Medieval Humanistica"],
|
71 |
+
[f"{base_url}hybrida-1.png", "Medieval Castilian Hybrida"],
|
72 |
+
[f"{base_url}hybrida-2.png", "Medieval Castilian Hybrida"],
|
73 |
+
[f"{base_url}hybrida-3.png", "Medieval Castilian Hybrida"],
|
74 |
+
[f"{base_url}praegothica-1.png", "Medieval Praegothica"],
|
75 |
+
[f"{base_url}praegothica-2.png", "Medieval Praegothica"],
|
76 |
+
[f"{base_url}praegothica-3.png", "Medieval Praegothica"],
|
77 |
+
[f"{base_url}print-1.png", "Medieval Print"],
|
78 |
+
[f"{base_url}print-2.png", "Medieval Print"],
|
79 |
+
[f"{base_url}print-3.png", "Medieval Print"],
|
80 |
+
[f"{base_url}semihybrida-1.png", "Medieval Semihybrida"],
|
81 |
+
[f"{base_url}semihybrida-2.png", "Medieval Semihybrida"],
|
82 |
+
[f"{base_url}semihybrida-3.png", "Medieval Semihybrida"],
|
83 |
+
[f"{base_url}semitextualis-1.png", "Medieval Semitextualis"],
|
84 |
+
[f"{base_url}semitextualis-2.png", "Medieval Semitextualis"],
|
85 |
+
[f"{base_url}semitextualis-3.png", "Medieval Semitextualis"],
|
86 |
+
[f"{base_url}textualis-1.png", "Medieval Textualis"],
|
87 |
+
[f"{base_url}textualis-2.png", "Medieval Textualis"],
|
88 |
+
[f"{base_url}textualis-3.png", "Medieval Textualis"],
|
89 |
+
]
|
90 |
+
|
91 |
+
# Custom CSS to make the image wider
|
92 |
+
custom_css = """
|
93 |
+
#image_upload {
|
94 |
+
max-width: 100% !important;
|
95 |
+
width: 100% !important;
|
96 |
+
height: auto !important;
|
97 |
+
}
|
98 |
+
#image_upload > div:first-child {
|
99 |
+
width: 100% !important;
|
100 |
+
}
|
101 |
+
#image_upload img {
|
102 |
+
max-width: 100% !important;
|
103 |
+
width: 100% !important;
|
104 |
+
height: auto !important;
|
105 |
+
}
|
106 |
+
"""
|
107 |
|
108 |
# Gradio interface
|
109 |
+
with gr.Blocks(css=custom_css) as iface:
|
110 |
+
gr.Markdown("# Medieval TrOCR Model Switcher")
|
111 |
+
gr.Markdown("Upload an image of medieval text and select a model to transcribe it. Note: This tool is designed to work on a single line of text at a time for optimal results.")
|
112 |
|
113 |
with gr.Row():
|
114 |
+
input_image = gr.Image(type="pil", label="Input Image", elem_id="image_upload")
|
115 |
model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model", value="Medieval Base")
|
116 |
|
117 |
+
transcription_output = gr.Textbox(label="Transcription")
|
|
|
|
|
118 |
|
119 |
submit_button = gr.Button("Transcribe")
|
120 |
+
submit_button.click(fn=process_image, inputs=[input_image, model_dropdown], outputs=transcription_output)
|
121 |
+
|
122 |
+
gr.Examples(examples, inputs=[input_image, model_dropdown], outputs=transcription_output)
|
123 |
|
124 |
iface.launch()
|