File size: 3,093 Bytes
35dfdca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928d3f5
 
35dfdca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import streamlit as st 
from streamlit_chat import message
import tempfile
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import CTransformers
from langchain.chains import ConversationalRetrievalChain

DB_FAISS_PATH = 'vectorstore/db_faiss'

#Loading the model
def load_llm():
    # Load the locally downloaded model here
    llm = CTransformers(
        model = "TheBloke/Llama-2-7B-Chat-GGML",
        max_new_tokens = 512,
        temperature = 0.5
    )
    return llm

st.title("Chat with CSV using Llama2")
st.image("https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png")

uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")

if uploaded_file :
   #use tempfile because CSVLoader only accepts a file_path
    with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
        tmp_file.write(uploaded_file.getvalue())
        tmp_file_path = tmp_file.name

    loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
                'delimiter': ','})
    data = loader.load()
    #st.json(data)
    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
                                       model_kwargs={'device': 'cpu'})

    db = FAISS.from_documents(data, embeddings)
    db.save_local(DB_FAISS_PATH)
    llm = load_llm()
    chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())

    def conversational_chat(query):
        result = chain({"question": query, "chat_history": st.session_state['history']})
        st.session_state['history'].append((query, result["answer"]))
        return result["answer"]
    
    if 'history' not in st.session_state:
        st.session_state['history'] = []

    if 'generated' not in st.session_state:
        st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " πŸ€—"]

    if 'past' not in st.session_state:
        st.session_state['past'] = ["Hey ! πŸ‘‹"]
        
    #container for the chat history
    response_container = st.container()
    #container for the user's text input
    container = st.container()

    with container:
        with st.form(key='my_form', clear_on_submit=True):
            
            user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input')
            submit_button = st.form_submit_button(label='Send')
            
        if submit_button and user_input:
            output = conversational_chat(user_input)
            
            st.session_state['past'].append(user_input)
            st.session_state['generated'].append(output)

    if st.session_state['generated']:
        with response_container:
            for i in range(len(st.session_state['generated'])):
                message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
                message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")