Spaces:
Runtime error
Runtime error
File size: 5,416 Bytes
8add151 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import requests
import json
import torch
import timm
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets, models
import torch.nn.functional as F
import PIL
import PIL.Image as Image
import numpy as np
from transformers import CLIPProcessor, CLIPModel
classes_outside_india = ['apple pie', 'baby back ribs', 'baklava', 'beef carpaccio', 'beef tartare',
'beet salad', 'beignets', 'bibimbap', 'bread pudding', 'breakfast burrito',
'bruschetta', 'caesar_salad', 'cannoli', 'caprese salad', 'carrot cake',
'ceviche', 'cheese plate', 'cheesecake', 'chicken curry',
'chicken quesadilla', 'chicken wings', 'chocolate cake', 'chocolate mousse',
'churros', 'clam chowder', 'club sandwich', 'crab cakes', 'creme brulee',
'croque madame', 'cup cakes', 'deviled eggs', 'donuts', 'dumplings', 'edamame',
'eggs benedict', 'escargots', 'falafel', 'filet mignon', 'fish and chips',
'foie gras', 'french fries', 'french onion soup', 'french toast',
'fried calamari', 'fried rice', 'frozen yogurt', 'garlic bread', 'gnocchi',
'greek salad', 'grilled cheese sandwich', 'grilled salmon', 'guacamole',
'gyoza', 'hamburger', 'hot and sour soup', 'hot dog', 'huevos rancheros',
'hummus', 'ice cream', 'lasagna', 'lobster bisque', 'lobster roll sandwich',
'macaroni and cheese', 'macarons', 'miso soup', 'mussels', 'nachos',
'omelette', 'onion rings', 'oysters', 'pad thai', 'paella', 'pancakes',
'panna cotta', 'peking duck', 'pho', 'pizza', 'pork chop', 'poutine',
'prime rib', 'pulled pork sandwich', 'ramen', 'ravioli', 'red velvet cake',
'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed salad',
'shrimp and grits', 'spaghetti bolognese', 'spaghetti carbonara',
'spring rolls', 'steak', 'strawberry_shortcake', 'sushi', 'tacos', 'takoyaki',
'tiramisu', 'tuna tartare', 'waffles']
classes_india = ['burger','butter_naan', 'chai', 'chapati', 'chole_bhature', 'dal_makhani', 'dhokla', 'fried_rice', 'idli',
'jalebi', 'kaathi_rolls', 'kadai_paneer', 'kulfi', 'masala_dosa', 'momos', 'paani_puri', 'pakode', 'pav_bhaji',
'pizza', 'samosa']
def food_nofood_pred(input_image):
# input labels for clip model
labels = ['food', 'not food']
# CLIP Model for classification
food_nofood_model = CLIPModel.from_pretrained("flax-community/clip-rsicd-v2")
processor = CLIPProcessor.from_pretrained("flax-community/clip-rsicd-v2")
# image = Image.open(requests.get(uploaded_file, stream=True).raw)
inputs = processor(text=[f"a photo of a {l}" for l in labels], images=input_image, return_tensors="pt", padding=True)
outputs = food_nofood_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
print(probs)
pred = probs.detach().cpu().numpy().argmax(axis=1)
pred_class = labels[pred[0]]
return pred_class
def make_pred_outside_india(input_img, model, device, user_location):
input_img = input_img.unsqueeze(0)
model.eval()
pred = model(input_img)
# if torch.cuda.is_available():
# pred = F.softmax(pred).detach().cpu().numpy()
# y_prob = pred.argmax(axis=1)[0] #return index with highest class probability
# else:
pred = F.softmax(pred).detach().numpy()
y_prob = pred.argmax(axis=1)[0]
if(user_location=='Outside India'):
class_label = classes_outside_india[y_prob]
elif(user_location=='India'):
class_label = classes_india[y_prob]
return class_label
def getmodel_outside_india(model_path):
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
effnet_b0 = timm.create_model(pretrained=True, model_name='tf_efficientnet_b0')
for param in effnet_b0.parameters():
param.requires_grad = True
effnet_b0.classifier = nn.Linear(1280, len(classes_outside_india))
effnet_b0 = effnet_b0
#Model Loading
effnet_b0.load_state_dict(torch.load(model_path,map_location='cpu'))
return effnet_b0
def getmodel_india(model_path):
#defining model
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
effnet_b0 = timm.create_model(pretrained=True, model_name='tf_efficientnet_b0')
for param in effnet_b0.parameters():
param.requires_grad = True
effnet_b0.classifier = nn.Linear(1280, len(classes_india))
effnet_b0 = effnet_b0
#Model Loading
effnet_b0.load_state_dict(torch.load(model_path, map_location='cpu'))
return effnet_b0
def load_prepare_img(image):
normalize = transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]
)
test_transform = transforms.Compose([
transforms.Resize((225, 225)),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
input_img = test_transform(image)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
return input_img,device
def fetch_recipe(food_name):
url = "https://recipesapi2.p.rapidapi.com/recipes/"+food_name
querystring = {"maxRecipes":"1"}
headers = {
'x-rapidapi-host': "recipesapi2.p.rapidapi.com",
'x-rapidapi-key': "f6f6823b91msh9e92fed91d5356ap136f5djsn494d8f582fb3"
}
response = requests.request("GET", url, headers=headers, params=querystring)
json_data = json.loads(response.text)
recipe_data = json_data['data'][0]
return recipe_data |