Spaces:
Runtime error
Runtime error
add more debug
Browse files
app.py
CHANGED
@@ -65,41 +65,46 @@ class ChaplinGradio:
|
|
65 |
def process_frame(self, frame):
|
66 |
"""Process frames with buffering"""
|
67 |
current_time = time.time()
|
|
|
|
|
|
|
|
|
68 |
|
69 |
if current_time - self.last_frame_time < self.frame_interval:
|
70 |
-
|
|
|
71 |
|
72 |
self.last_frame_time = current_time
|
73 |
|
74 |
if frame is None:
|
75 |
-
|
76 |
-
return "No video input detected"
|
77 |
|
78 |
try:
|
79 |
-
|
80 |
|
81 |
# Convert frame to grayscale if it's not already
|
82 |
if len(frame.shape) == 3:
|
83 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
84 |
-
|
85 |
|
86 |
# Add frame to buffer
|
87 |
self.frame_buffer.append(frame)
|
88 |
-
|
89 |
|
90 |
# Process when we have enough frames
|
91 |
if len(self.frame_buffer) >= self.min_frames:
|
92 |
-
|
93 |
# Create temp directory if it doesn't exist
|
94 |
os.makedirs("temp", exist_ok=True)
|
95 |
|
96 |
# Generate temporary video file path
|
97 |
temp_video = f"temp/frames_{time.time_ns()}.mp4"
|
98 |
-
|
99 |
|
100 |
# Get frame dimensions from first frame
|
101 |
frame_height, frame_width = self.frame_buffer[0].shape[:2]
|
102 |
-
|
103 |
|
104 |
# Create video writer
|
105 |
out = cv2.VideoWriter(
|
@@ -113,36 +118,38 @@ class ChaplinGradio:
|
|
113 |
# Write all frames to video
|
114 |
for i, f in enumerate(self.frame_buffer):
|
115 |
out.write(f)
|
116 |
-
|
117 |
out.release()
|
118 |
|
119 |
# Clear buffer but keep last few frames for continuity
|
120 |
self.frame_buffer = self.frame_buffer[-8:] # Keep last 0.5 seconds
|
121 |
-
|
122 |
|
123 |
try:
|
124 |
# Process the video file using the pipeline
|
125 |
-
|
126 |
predicted_text = self.vsr_model(temp_video)
|
127 |
-
|
128 |
if predicted_text:
|
129 |
self.last_prediction = predicted_text
|
130 |
-
return self.last_prediction
|
131 |
|
132 |
except Exception as e:
|
133 |
-
|
134 |
-
|
|
|
135 |
finally:
|
136 |
# Clean up temp file
|
137 |
if os.path.exists(temp_video):
|
138 |
os.remove(temp_video)
|
139 |
-
|
140 |
|
141 |
-
return self.last_prediction or "Waiting for speech..."
|
142 |
|
143 |
except Exception as e:
|
144 |
-
|
145 |
-
|
|
|
146 |
|
147 |
|
148 |
# Create Gradio interface
|
|
|
65 |
def process_frame(self, frame):
|
66 |
"""Process frames with buffering"""
|
67 |
current_time = time.time()
|
68 |
+
debug_log = [] # List to collect debug messages
|
69 |
+
|
70 |
+
# Add initial debug info
|
71 |
+
debug_log.append(f"Current time: {current_time}")
|
72 |
|
73 |
if current_time - self.last_frame_time < self.frame_interval:
|
74 |
+
debug_log.append("Skipping frame - too soon")
|
75 |
+
return self.last_prediction, "\n".join(debug_log) # Make sure we return both values
|
76 |
|
77 |
self.last_frame_time = current_time
|
78 |
|
79 |
if frame is None:
|
80 |
+
debug_log.append("Received None frame")
|
81 |
+
return "No video input detected", "\n".join(debug_log)
|
82 |
|
83 |
try:
|
84 |
+
debug_log.append(f"Received frame with shape: {frame.shape}")
|
85 |
|
86 |
# Convert frame to grayscale if it's not already
|
87 |
if len(frame.shape) == 3:
|
88 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
89 |
+
debug_log.append("Converted frame to grayscale")
|
90 |
|
91 |
# Add frame to buffer
|
92 |
self.frame_buffer.append(frame)
|
93 |
+
debug_log.append(f"Buffer size now: {len(self.frame_buffer)}/{self.min_frames}")
|
94 |
|
95 |
# Process when we have enough frames
|
96 |
if len(self.frame_buffer) >= self.min_frames:
|
97 |
+
debug_log.append("Processing buffer - have enough frames")
|
98 |
# Create temp directory if it doesn't exist
|
99 |
os.makedirs("temp", exist_ok=True)
|
100 |
|
101 |
# Generate temporary video file path
|
102 |
temp_video = f"temp/frames_{time.time_ns()}.mp4"
|
103 |
+
debug_log.append(f"Created temp video path: {temp_video}")
|
104 |
|
105 |
# Get frame dimensions from first frame
|
106 |
frame_height, frame_width = self.frame_buffer[0].shape[:2]
|
107 |
+
debug_log.append(f"Video dimensions: {frame_width}x{frame_height}")
|
108 |
|
109 |
# Create video writer
|
110 |
out = cv2.VideoWriter(
|
|
|
118 |
# Write all frames to video
|
119 |
for i, f in enumerate(self.frame_buffer):
|
120 |
out.write(f)
|
121 |
+
debug_log.append(f"Wrote {i+1} frames to video")
|
122 |
out.release()
|
123 |
|
124 |
# Clear buffer but keep last few frames for continuity
|
125 |
self.frame_buffer = self.frame_buffer[-8:] # Keep last 0.5 seconds
|
126 |
+
debug_log.append(f"Cleared buffer, kept {len(self.frame_buffer)} frames")
|
127 |
|
128 |
try:
|
129 |
# Process the video file using the pipeline
|
130 |
+
debug_log.append("Starting model inference...")
|
131 |
predicted_text = self.vsr_model(temp_video)
|
132 |
+
debug_log.append(f"Model prediction: {predicted_text}")
|
133 |
if predicted_text:
|
134 |
self.last_prediction = predicted_text
|
135 |
+
return (self.last_prediction or "Waiting for speech..."), "\n".join(debug_log)
|
136 |
|
137 |
except Exception as e:
|
138 |
+
error_msg = f"Error during inference: {str(e)}"
|
139 |
+
debug_log.append(error_msg)
|
140 |
+
return f"Error processing frames: {str(e)}", "\n".join(debug_log)
|
141 |
finally:
|
142 |
# Clean up temp file
|
143 |
if os.path.exists(temp_video):
|
144 |
os.remove(temp_video)
|
145 |
+
debug_log.append("Cleaned up temp video file")
|
146 |
|
147 |
+
return (self.last_prediction or "Waiting for speech..."), "\n".join(debug_log)
|
148 |
|
149 |
except Exception as e:
|
150 |
+
error_msg = f"Error processing: {str(e)}"
|
151 |
+
debug_log.append(error_msg)
|
152 |
+
return f"Error processing: {str(e)}", "\n".join(debug_log)
|
153 |
|
154 |
|
155 |
# Create Gradio interface
|