Spaces:
Sleeping
Sleeping
| import os | |
| import streamlit as st | |
| import tensorflow as tf | |
| from PIL import Image | |
| import numpy as np | |
| # Load your Keras model from Google Drive | |
| model = tf.keras.models.load_model('/content/drive/MyDrive/your_trained_model.keras') | |
| # Streamlit UI | |
| st.title("Christmas Tree Classifier") | |
| st.write("Upload an image of a Christmas tree to classify it:") | |
| uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| # Display the uploaded image | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption="Uploaded Image.", use_column_width=True) | |
| st.write("") | |
| st.write("Classifying...") | |
| # Preprocess the image | |
| image = image.resize((224, 224)) # Resize to match your model's input size | |
| image_array = np.array(image) / 255.0 # Normalize pixel values | |
| image_array = np.expand_dims(image_array, axis=0) # Add batch dimension | |
| # Make prediction | |
| prediction = model.predict(image_array) | |
| # Get predicted class | |
| predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated" | |
| # Display the prediction | |
| st.write(f"Prediction: {predicted_class}") |