import os import streamlit as st import tensorflow as tf from PIL import Image import numpy as np # Load your Keras model from Google Drive model = tf.keras.models.load_model('/content/drive/MyDrive/your_trained_model.keras') # Streamlit UI st.title("Christmas Tree Classifier") st.write("Upload an image of a Christmas tree to classify it:") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image.", use_column_width=True) st.write("") st.write("Classifying...") # Preprocess the image image = image.resize((224, 224)) # Resize to match your model's input size image_array = np.array(image) / 255.0 # Normalize pixel values image_array = np.expand_dims(image_array, axis=0) # Add batch dimension # Make prediction prediction = model.predict(image_array) # Get predicted class predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated" # Display the prediction st.write(f"Prediction: {predicted_class}")