Spaces:
Running
Running
Init commit
Browse files- .gitattributes +1 -0
- app.py +45 -0
- images/Kobe_coffee.jpg +0 -0
- images/basketball.jpg +0 -0
- models/__init__.py +1 -0
- models/mambaout.py +313 -0
- requirements.txt +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.DS_Store
|
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
from timm.data import create_transform
|
6 |
+
|
7 |
+
|
8 |
+
# Prepare the model.
|
9 |
+
import models
|
10 |
+
model = models.mambaout_femto(pretrained=True) # can change different model name
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
# Prepare the transform.
|
14 |
+
transform = create_transform(input_size=224, crop_pct=model.default_cfg['crop_pct'])
|
15 |
+
|
16 |
+
# Download human-readable labels for ImageNet.
|
17 |
+
response = requests.get("https://git.io/JJkYN")
|
18 |
+
labels = response.text.split("\n")
|
19 |
+
|
20 |
+
def predict(inp):
|
21 |
+
inp = transform(inp).unsqueeze(0)
|
22 |
+
|
23 |
+
with torch.no_grad():
|
24 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
25 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
26 |
+
return confidences
|
27 |
+
|
28 |
+
|
29 |
+
title="MambaOut: Do We Really Need Mamba for Vision?"
|
30 |
+
description="Gradio demo for MambaOut model (Femto) proposed by [MambaOut: Do We Really Need Mamba for Vision?](https://arxiv.org/abs/2405.07992). To use it simply upload your image or click on one of the examples to load them. Read more at [arXiv](https://arxiv.org/abs/2405.07992) and [GitHub](https://github.com/yuweihao/MambaOut)."
|
31 |
+
|
32 |
+
|
33 |
+
gr.Interface(title=title,
|
34 |
+
description=description,
|
35 |
+
fn=predict,
|
36 |
+
inputs=gr.Image(type="pil"),
|
37 |
+
outputs=gr.Label(num_top_classes=3),
|
38 |
+
examples=["images/basketball.jpg", "images/Kobe_coffee.jpg"]).launch()
|
39 |
+
|
40 |
+
# Basketball image credit: https://www.sportsonline.com.au/products/kobe-bryant-hand-signed-basketball-signed-in-silver
|
41 |
+
# Kobe coffee image credit: https://aroundsaddleworth.co.uk/wp-content/uploads/2020/01/DSC_0177-scaled.jpg
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
images/Kobe_coffee.jpg
ADDED
images/basketball.jpg
ADDED
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .mambaout import *
|
models/mambaout.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MambaOut models for image classification.
|
3 |
+
Some implementations are modified from:
|
4 |
+
timm (https://github.com/rwightman/pytorch-image-models),
|
5 |
+
MetaFormer (https://github.com/sail-sg/metaformer),
|
6 |
+
InceptionNeXt (https://github.com/sail-sg/inceptionnext)
|
7 |
+
"""
|
8 |
+
from functools import partial
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from timm.models.layers import trunc_normal_, DropPath
|
13 |
+
from timm.models.registry import register_model
|
14 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
15 |
+
|
16 |
+
|
17 |
+
def _cfg(url='', **kwargs):
|
18 |
+
return {
|
19 |
+
'url': url,
|
20 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
21 |
+
'crop_pct': 1.0, 'interpolation': 'bicubic',
|
22 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
|
23 |
+
**kwargs
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
default_cfgs = {
|
28 |
+
'mambaout_femto': _cfg(
|
29 |
+
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_femto.pth'),
|
30 |
+
'mambaout_tiny': _cfg(
|
31 |
+
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_tiny.pth'),
|
32 |
+
'mambaout_small': _cfg(
|
33 |
+
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_small.pth'),
|
34 |
+
'mambaout_base': _cfg(
|
35 |
+
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'),
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
class StemLayer(nn.Module):
|
40 |
+
r""" Code modified from InternImage:
|
41 |
+
https://github.com/OpenGVLab/InternImage
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(self,
|
45 |
+
in_channels=3,
|
46 |
+
out_channels=96,
|
47 |
+
act_layer=nn.GELU,
|
48 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6)):
|
49 |
+
super().__init__()
|
50 |
+
self.conv1 = nn.Conv2d(in_channels,
|
51 |
+
out_channels // 2,
|
52 |
+
kernel_size=3,
|
53 |
+
stride=2,
|
54 |
+
padding=1)
|
55 |
+
self.norm1 = norm_layer(out_channels // 2)
|
56 |
+
self.act = act_layer()
|
57 |
+
self.conv2 = nn.Conv2d(out_channels // 2,
|
58 |
+
out_channels,
|
59 |
+
kernel_size=3,
|
60 |
+
stride=2,
|
61 |
+
padding=1)
|
62 |
+
self.norm2 = norm_layer(out_channels)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
x = self.conv1(x)
|
66 |
+
x = x.permute(0, 2, 3, 1)
|
67 |
+
x = self.norm1(x)
|
68 |
+
x = x.permute(0, 3, 1, 2)
|
69 |
+
x = self.act(x)
|
70 |
+
x = self.conv2(x)
|
71 |
+
x = x.permute(0, 2, 3, 1)
|
72 |
+
x = self.norm2(x)
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class DownsampleLayer(nn.Module):
|
77 |
+
r""" Code modified from InternImage:
|
78 |
+
https://github.com/OpenGVLab/InternImage
|
79 |
+
"""
|
80 |
+
def __init__(self, in_channels=96, out_channels=198, norm_layer=partial(nn.LayerNorm, eps=1e-6)):
|
81 |
+
super().__init__()
|
82 |
+
self.conv = nn.Conv2d(in_channels,
|
83 |
+
out_channels,
|
84 |
+
kernel_size=3,
|
85 |
+
stride=2,
|
86 |
+
padding=1)
|
87 |
+
self.norm = norm_layer(out_channels)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
x = self.conv(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
91 |
+
x = self.norm(x)
|
92 |
+
return x
|
93 |
+
|
94 |
+
|
95 |
+
class MlpHead(nn.Module):
|
96 |
+
""" MLP classification head
|
97 |
+
"""
|
98 |
+
def __init__(self, dim, num_classes=1000, act_layer=nn.GELU, mlp_ratio=4,
|
99 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), head_dropout=0., bias=True):
|
100 |
+
super().__init__()
|
101 |
+
hidden_features = int(mlp_ratio * dim)
|
102 |
+
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
|
103 |
+
self.act = act_layer()
|
104 |
+
self.norm = norm_layer(hidden_features)
|
105 |
+
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
|
106 |
+
self.head_dropout = nn.Dropout(head_dropout)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.fc1(x)
|
110 |
+
x = self.act(x)
|
111 |
+
x = self.norm(x)
|
112 |
+
x = self.head_dropout(x)
|
113 |
+
x = self.fc2(x)
|
114 |
+
return x
|
115 |
+
|
116 |
+
|
117 |
+
class GatedCNNBlock(nn.Module):
|
118 |
+
r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083
|
119 |
+
Args:
|
120 |
+
conv_ratio: control the number of channels to conduct depthwise convolution.
|
121 |
+
Conduct convolution on partial channels can improve paraitcal efficiency.
|
122 |
+
The idea of partical channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and
|
123 |
+
also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667)
|
124 |
+
"""
|
125 |
+
def __init__(self, dim, expension_ratio=8/3, kernel_size=7, conv_ratio=1.0,
|
126 |
+
norm_layer=partial(nn.LayerNorm,eps=1e-6),
|
127 |
+
act_layer=nn.GELU,
|
128 |
+
drop_path=0.,
|
129 |
+
**kwargs):
|
130 |
+
super().__init__()
|
131 |
+
self.norm = norm_layer(dim)
|
132 |
+
hidden = int(expension_ratio * dim)
|
133 |
+
self.fc1 = nn.Linear(dim, hidden * 2)
|
134 |
+
self.act = act_layer()
|
135 |
+
conv_channels = int(conv_ratio * dim)
|
136 |
+
self.split_indices = (hidden, hidden - conv_channels, conv_channels)
|
137 |
+
self.conv = nn.Conv2d(conv_channels, conv_channels, kernel_size=kernel_size, padding=kernel_size//2, groups=conv_channels)
|
138 |
+
self.fc2 = nn.Linear(hidden, dim)
|
139 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
140 |
+
|
141 |
+
def forward(self, x):
|
142 |
+
shortcut = x # [B, H, W, C]
|
143 |
+
x = self.norm(x)
|
144 |
+
g, i, c = torch.split(self.fc1(x), self.split_indices, dim=-1)
|
145 |
+
c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
|
146 |
+
c = self.conv(c)
|
147 |
+
c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
|
148 |
+
x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1))
|
149 |
+
x = self.drop_path(x)
|
150 |
+
return x + shortcut
|
151 |
+
|
152 |
+
r"""
|
153 |
+
downsampling (stem) for the first stage is two layer of conv with k3, s2 and p1
|
154 |
+
downsamplings for the last 3 stages is a layer of conv with k3, s2 and p1
|
155 |
+
DOWNSAMPLE_LAYERS_FOUR_STAGES format: [Downsampling, Downsampling, Downsampling, Downsampling]
|
156 |
+
use `partial` to specify some arguments
|
157 |
+
"""
|
158 |
+
DOWNSAMPLE_LAYERS_FOUR_STAGES = [StemLayer] + [DownsampleLayer]*3
|
159 |
+
|
160 |
+
|
161 |
+
class MambaOut(nn.Module):
|
162 |
+
r""" MetaFormer
|
163 |
+
A PyTorch impl of : `MetaFormer Baselines for Vision` -
|
164 |
+
https://arxiv.org/abs/2210.13452
|
165 |
+
|
166 |
+
Args:
|
167 |
+
in_chans (int): Number of input image channels. Default: 3.
|
168 |
+
num_classes (int): Number of classes for classification head. Default: 1000.
|
169 |
+
depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3].
|
170 |
+
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576].
|
171 |
+
downsample_layers: (list or tuple): Downsampling layers before each stage.
|
172 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
173 |
+
output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6).
|
174 |
+
head_fn: classification head. Default: nn.Linear.
|
175 |
+
head_dropout (float): dropout for MLP classifier. Default: 0.
|
176 |
+
"""
|
177 |
+
def __init__(self, in_chans=3, num_classes=1000,
|
178 |
+
depths=[3, 3, 9, 3],
|
179 |
+
dims=[96, 192, 384, 576],
|
180 |
+
downsample_layers=DOWNSAMPLE_LAYERS_FOUR_STAGES,
|
181 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
182 |
+
act_layer=nn.GELU,
|
183 |
+
conv_ratio=1.0,
|
184 |
+
kernel_size=7,
|
185 |
+
drop_path_rate=0.,
|
186 |
+
output_norm=partial(nn.LayerNorm, eps=1e-6),
|
187 |
+
head_fn=MlpHead,
|
188 |
+
head_dropout=0.0,
|
189 |
+
**kwargs,
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
self.num_classes = num_classes
|
193 |
+
|
194 |
+
if not isinstance(depths, (list, tuple)):
|
195 |
+
depths = [depths] # it means the model has only one stage
|
196 |
+
if not isinstance(dims, (list, tuple)):
|
197 |
+
dims = [dims]
|
198 |
+
|
199 |
+
num_stage = len(depths)
|
200 |
+
self.num_stage = num_stage
|
201 |
+
|
202 |
+
if not isinstance(downsample_layers, (list, tuple)):
|
203 |
+
downsample_layers = [downsample_layers] * num_stage
|
204 |
+
down_dims = [in_chans] + dims
|
205 |
+
self.downsample_layers = nn.ModuleList(
|
206 |
+
[downsample_layers[i](down_dims[i], down_dims[i+1]) for i in range(num_stage)]
|
207 |
+
)
|
208 |
+
|
209 |
+
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
210 |
+
|
211 |
+
self.stages = nn.ModuleList()
|
212 |
+
cur = 0
|
213 |
+
for i in range(num_stage):
|
214 |
+
stage = nn.Sequential(
|
215 |
+
*[GatedCNNBlock(dim=dims[i],
|
216 |
+
norm_layer=norm_layer,
|
217 |
+
act_layer=act_layer,
|
218 |
+
kernel_size=kernel_size,
|
219 |
+
conv_ratio=conv_ratio,
|
220 |
+
drop_path=dp_rates[cur + j],
|
221 |
+
) for j in range(depths[i])]
|
222 |
+
)
|
223 |
+
self.stages.append(stage)
|
224 |
+
cur += depths[i]
|
225 |
+
|
226 |
+
self.norm = output_norm(dims[-1])
|
227 |
+
|
228 |
+
if head_dropout > 0.0:
|
229 |
+
self.head = head_fn(dims[-1], num_classes, head_dropout=head_dropout)
|
230 |
+
else:
|
231 |
+
self.head = head_fn(dims[-1], num_classes)
|
232 |
+
|
233 |
+
self.apply(self._init_weights)
|
234 |
+
|
235 |
+
def _init_weights(self, m):
|
236 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
237 |
+
trunc_normal_(m.weight, std=.02)
|
238 |
+
if m.bias is not None:
|
239 |
+
nn.init.constant_(m.bias, 0)
|
240 |
+
|
241 |
+
@torch.jit.ignore
|
242 |
+
def no_weight_decay(self):
|
243 |
+
return {'norm'}
|
244 |
+
|
245 |
+
def forward_features(self, x):
|
246 |
+
for i in range(self.num_stage):
|
247 |
+
x = self.downsample_layers[i](x)
|
248 |
+
x = self.stages[i](x)
|
249 |
+
return self.norm(x.mean([1, 2])) # (B, H, W, C) -> (B, C)
|
250 |
+
|
251 |
+
def forward(self, x):
|
252 |
+
x = self.forward_features(x)
|
253 |
+
x = self.head(x)
|
254 |
+
return x
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
###############################################################################
|
259 |
+
# a series of MambaOut models
|
260 |
+
@register_model
|
261 |
+
def mambaout_femto(pretrained=False, **kwargs):
|
262 |
+
model = MambaOut(
|
263 |
+
depths=[3, 3, 9, 3],
|
264 |
+
dims=[48, 96, 192, 288],
|
265 |
+
**kwargs)
|
266 |
+
model.default_cfg = default_cfgs['mambaout_femto']
|
267 |
+
if pretrained:
|
268 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
269 |
+
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
|
270 |
+
model.load_state_dict(state_dict)
|
271 |
+
return model
|
272 |
+
|
273 |
+
|
274 |
+
@register_model
|
275 |
+
def mambaout_tiny(pretrained=False, **kwargs):
|
276 |
+
model = MambaOut(
|
277 |
+
depths=[3, 3, 9, 3],
|
278 |
+
dims=[96, 192, 384, 576],
|
279 |
+
**kwargs)
|
280 |
+
model.default_cfg = default_cfgs['mambaout_tiny']
|
281 |
+
if pretrained:
|
282 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
283 |
+
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
|
284 |
+
model.load_state_dict(state_dict)
|
285 |
+
return model
|
286 |
+
|
287 |
+
|
288 |
+
@register_model
|
289 |
+
def mambaout_small(pretrained=False, **kwargs):
|
290 |
+
model = MambaOut(
|
291 |
+
depths=[3, 4, 27, 3],
|
292 |
+
dims=[96, 192, 384, 576],
|
293 |
+
**kwargs)
|
294 |
+
model.default_cfg = default_cfgs['mambaout_small']
|
295 |
+
if pretrained:
|
296 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
297 |
+
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
|
298 |
+
model.load_state_dict(state_dict)
|
299 |
+
return model
|
300 |
+
|
301 |
+
|
302 |
+
@register_model
|
303 |
+
def mambaout_base(pretrained=False, **kwargs):
|
304 |
+
model = MambaOut(
|
305 |
+
depths=[3, 4, 27, 3],
|
306 |
+
dims=[128, 256, 512, 768],
|
307 |
+
**kwargs)
|
308 |
+
model.default_cfg = default_cfgs['mambaout_base']
|
309 |
+
if pretrained:
|
310 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
311 |
+
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
|
312 |
+
model.load_state_dict(state_dict)
|
313 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
timm==0.6.11
|