File size: 1,864 Bytes
a7c8c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a6e6a
a7c8c20
 
f6a6e6a
 
 
a7c8c20
f6a6e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7c8c20
 
f6a6e6a
 
 
 
 
 
a7c8c20
 
 
 
 
 
f6a6e6a
a7c8c20
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8">
        <meta name="viewport" content="width=device-width, initial-scale=1">
        <title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title>
        <meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser">

        <script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />

        <style>
            html, body {
                margin: 0;
                padding: 0;
                height: 100%;
            }
        </style>
    </head>
    <body>
        <gradio-lite>
            <gradio-file name="app.py" entrypoint>
from transformers_js import import_transformers_js, as_url
import gradio as gr

transformers = await import_transformers_js()
pipeline = transformers.pipeline
pipe = await pipeline('object-detection', "Xenova/yolos-tiny")

async def detect(input_image):
    result = await pipe(as_url(input_image))
    gradio_labels = [
        # List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]
        (
            (
                int(item["box"]["xmin"]),
                int(item["box"]["ymin"]),
                int(item["box"]["xmax"]),
                int(item["box"]["ymax"]),
            ),
            item["label"],
        )
        for item in result
    ]
    annotated_image_data = input_image, gradio_labels
    return annotated_image_data, result

demo = gr.Interface(
    detect,
    gr.Image(type="filepath"),
    [
        gr.AnnotatedImage(),
        gr.JSON(),
    ]
)

demo.launch()
            </gradio-file>

            <gradio-requirements>
transformers_js_py
            </gradio-requirements>
        </gradio-lite>
    </body>
</html>