File size: 1,864 Bytes
a7c8c20 f6a6e6a a7c8c20 f6a6e6a a7c8c20 f6a6e6a a7c8c20 f6a6e6a a7c8c20 f6a6e6a a7c8c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title>
<meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser">
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
<style>
html, body {
margin: 0;
padding: 0;
height: 100%;
}
</style>
</head>
<body>
<gradio-lite>
<gradio-file name="app.py" entrypoint>
from transformers_js import import_transformers_js, as_url
import gradio as gr
transformers = await import_transformers_js()
pipeline = transformers.pipeline
pipe = await pipeline('object-detection', "Xenova/yolos-tiny")
async def detect(input_image):
result = await pipe(as_url(input_image))
gradio_labels = [
# List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]
(
(
int(item["box"]["xmin"]),
int(item["box"]["ymin"]),
int(item["box"]["xmax"]),
int(item["box"]["ymax"]),
),
item["label"],
)
for item in result
]
annotated_image_data = input_image, gradio_labels
return annotated_image_data, result
demo = gr.Interface(
detect,
gr.Image(type="filepath"),
[
gr.AnnotatedImage(),
gr.JSON(),
]
)
demo.launch()
</gradio-file>
<gradio-requirements>
transformers_js_py
</gradio-requirements>
</gradio-lite>
</body>
</html> |