File size: 1,278 Bytes
94fb3e3 87b7198 d0fed62 87b7198 46c5cff 87b7198 fa37937 d0fed62 87b7198 38d8048 d0fed62 38d8048 87b7198 38d8048 46c5cff 87b7198 46c5cff 38d8048 46c5cff 705fa3c 87b7198 94fb3e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
<html>
<head>
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
</head>
<body>
<gradio-lite>
<gradio-requirements>
transformers_js_py
</gradio-requirements>
<gradio-file name="app.py" entrypoint>
from transformers_js_py import import_transformers_js
import gradio as gr
import numpy as np
transformers_js = await import_transformers_js("3.0.2")
pipeline = transformers_js.pipeline
synthesizer = await pipeline(
'text-to-speech',
'Xenova/speecht5_tts',
{ "quantized": False }
)
speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin';
async def synthesize(text):
out = await synthesizer(text, { "speaker_embeddings": speaker_embeddings });
audio_data_memory_view = out["audio"]
sampling_rate = out["sampling_rate"]
audio_data = np.frombuffer(audio_data_memory_view, dtype=np.float32)
audio_data_16bit = (audio_data * 32767).astype(np.int16)
return sampling_rate, audio_data_16bit
demo = gr.Interface(synthesize, "textbox", "audio")
demo.launch()
</gradio-file>
</gradio-lite>
</body>
</html>
|