Spaces:
Running
Running
import torch | |
import torchaudio | |
import spaces | |
from typing import List | |
import soundfile as sf | |
import gradio as gr | |
import tempfile | |
import subprocess | |
def convert_to_16kHz_mono(input_file, output_file): | |
""" | |
Converts an audio file to 16KHz sample rate and single channel (mono) using ffmpeg. | |
Parameters: | |
input_file (str): Path to the input audio file. | |
output_file (str): Path to the output WAV file. | |
""" | |
try: | |
# Run the ffmpeg command | |
subprocess.run(['ffmpeg', '-y', '-i', input_file, '-ar', '16000', '-ac', '1', output_file], check=True) | |
print(f"Conversion complete: {output_file}") | |
return output_file | |
except subprocess.CalledProcessError as e: | |
print(f"An error occurred during conversion: {e}") | |
def create_temp_wav_file(): | |
# Create a temporary file using NamedTemporaryFile | |
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) | |
# Get the path of the temporary file | |
temp_file_path = temp_file.name | |
return temp_file_path | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=True, pretrained=True, device=device) | |
def convert_voice(src_wav_path:str, ref_wav_paths, top_k:int): | |
tmp_src_wav_path = create_temp_wav_file() | |
tmp_ref_wav_path = create_temp_wav_file() | |
src_wav_path = convert_to_16kHz_mono(src_wav_path, tmp_src_wav_path) | |
ref_wav_paths = convert_to_16kHz_mono(ref_wav_paths, tmp_ref_wav_path) | |
query_seq = knn_vc.get_features(src_wav_path) | |
matching_set = knn_vc.get_matching_set([ref_wav_paths]) | |
out_wav = knn_vc.match(query_seq, matching_set, topk=int(top_k)) | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as converted_file: | |
sf.write(converted_file.name, out_wav, 16000, "PCM_24") | |
return converted_file.name | |
title = """ | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;" | |
> <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
KNN Voice Conversion | |
</h1> </div> | |
</div> | |
""" | |
description = """ | |
Voice Conversion With Just k-Nearest Neighbors. The source and reference utterance(s) are encoded into self-supervised features using WavLM. | |
Each source feature is assigned to the mean of the k closest features from the reference. | |
The resulting feature sequence is then vocoded with HiFi-GAN to arrive at the converted waveform output. | |
""" | |
article = """ | |
If the model contributes to your research please cite the following work: | |
Baas, M., van Niekerk, B., & Kamper, H. (2023). Voice conversion with just nearest neighbors. arXiv preprint arXiv:2305.18975. | |
demo contributed by [@wetdog](https://github.com/wetdog) | |
""" | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Interface( | |
fn=convert_voice, | |
inputs=[ | |
gr.Audio(type='filepath'), | |
gr.Audio(type='filepath'), | |
#gr.File(file_count="multiple", type="filepath", label="Reference Audio Files"), | |
gr.Slider( | |
3, | |
10, | |
value=4, | |
step=1, | |
label="Top-k", | |
info=f"These default settings provide pretty good results, but feel free to modify the kNN topk", | |
)], | |
outputs=[gr.Audio(type='filepath')], | |
allow_flagging=False,) | |
gr.Markdown(article) | |
demo.queue(max_size=10) | |
demo.launch(show_api=False, server_name="0.0.0.0", server_port=7860) | |