Spaces:
Running
Running
import glob | |
import os | |
import shutil | |
import torch | |
from torch.nn.utils import weight_norm | |
import json | |
def plot_spectrogram(spectrogram): | |
import matplotlib.pylab as plt | |
import matplotlib | |
matplotlib.use("Agg") | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", | |
interpolation='none') | |
plt.colorbar(im, ax=ax) | |
fig.canvas.draw() | |
plt.close() | |
return fig | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def apply_weight_norm(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
weight_norm(m) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size*dilation - dilation)/2) | |
def load_checkpoint(filepath, device): | |
assert os.path.isfile(filepath) | |
print("Loading '{}'".format(filepath)) | |
checkpoint_dict = torch.load(filepath, map_location=device) | |
print("Complete.") | |
return checkpoint_dict | |
def save_checkpoint(filepath, obj): | |
print("Saving checkpoint to {}".format(filepath)) | |
torch.save(obj, filepath) | |
print("Complete.") | |
def scan_checkpoint(cp_dir, prefix): | |
pattern = os.path.join(cp_dir, prefix + '*') | |
cp_list = glob.glob(pattern) | |
if len(cp_list) == 0: | |
return None | |
return sorted(cp_list)[-1] | |
class AttrDict(dict): | |
def __init__(self, *args, **kwargs): | |
super(AttrDict, self).__init__(*args, **kwargs) | |
self.__dict__ = self | |
def build_env(config, config_name, path): | |
t_path = os.path.join(path, config_name) | |
if config != t_path: | |
os.makedirs(path, exist_ok=True) | |
shutil.copyfile(config, os.path.join(path, config_name)) | |