wesleymorris commited on
Commit
7919170
·
verified ·
1 Parent(s): 5d900e0

Update app.py

Browse files

Change number of labels

Files changed (1) hide show
  1. app.py +30 -30
app.py CHANGED
@@ -1,31 +1,31 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import numpy as np
4
- from transformers import (AutoTokenizer, AutoModelForSequenceClassification)
5
-
6
- model = AutoModelForSequenceClassification.from_pretrained('tiedaar/metacognitive-cls',
7
- num_labels=8,
8
- problem_type = "multi_label_classification")
9
- tokenizer = AutoTokenizer.from_pretrained('tiedaar/metacognitive-cls', use_fast=False)
10
-
11
- labels = list(model.config.id2label.values())
12
-
13
- def sigmoid(x):
14
- return 1/(1 + np.exp(-x))
15
-
16
- def generate_output(sequence):
17
- input_ids = tokenizer(sequence, return_tensors='pt')['input_ids']
18
- outputs = np.array(model(input_ids).logits.detach().reshape(-1))
19
- predictions = sigmoid(outputs)
20
- predictions = (predictions > 0.5).astype(int)
21
- return predictions
22
-
23
- st.title("Metacognitive Strategy Classification")
24
- st.subheader("This app classifies natural language descriptions of study strategies according to the metacognitive strategies being employed")
25
-
26
- sequence = st.text_area("Please input the text here")
27
- df = pd.DataFrame(columns=labels)
28
- if st.button("Click here"):
29
- resp = generate_output(sequence)
30
- df.loc[len(df)] = resp
31
  st.table(df)
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from transformers import (AutoTokenizer, AutoModelForSequenceClassification)
5
+
6
+ model = AutoModelForSequenceClassification.from_pretrained('tiedaar/metacognitive-cls',
7
+ num_labels=10,
8
+ problem_type = "multi_label_classification")
9
+ tokenizer = AutoTokenizer.from_pretrained('tiedaar/metacognitive-cls', use_fast=False)
10
+
11
+ labels = list(model.config.id2label.values())
12
+
13
+ def sigmoid(x):
14
+ return 1/(1 + np.exp(-x))
15
+
16
+ def generate_output(sequence):
17
+ input_ids = tokenizer(sequence, return_tensors='pt')['input_ids']
18
+ outputs = np.array(model(input_ids).logits.detach().reshape(-1))
19
+ predictions = sigmoid(outputs)
20
+ predictions = (predictions > 0.5).astype(int)
21
+ return predictions
22
+
23
+ st.title("Metacognitive Strategy Classification")
24
+ st.subheader("This app classifies natural language descriptions of study strategies according to the metacognitive strategies being employed")
25
+
26
+ sequence = st.text_area("Please input the text here")
27
+ df = pd.DataFrame(columns=labels)
28
+ if st.button("Click here"):
29
+ resp = generate_output(sequence)
30
+ df.loc[len(df)] = resp
31
  st.table(df)