File size: 12,259 Bytes
57a506a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d10277a
57a506a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import time
import urllib
import spacy
import pandas as pd
import unicodedata
import requests
import json
import os
import tiktoken
from bs4 import BeautifulSoup
from openai import OpenAI
from langchain.document_loaders import DataFrameLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
# from langchain.vectorstores.deeplake import DeepLake
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel
from urllib.parse import quote
from urllib.request import Request


class MLSalesPitch:

    def __init__(self):
        self.retriever_sales_pitch = None
        self.retriever_about = None

        self.TOKEN_ML = None#os.environ['TOKEN_ML']
        self.OPENAI_API_KEY = os.environ['OPENAI_KEY']

        self.client = OpenAI()
        self.nlp = None#spacy.load("pt_core_news_sm")

        OpenAI.api_key = self.OPENAI_API_KEY

        self.output_parser = StrOutputParser()
        self.model = ChatOpenAI(openai_api_key=self.OPENAI_API_KEY, model="gpt-3.5-turbo")

        template = """Com base nas seguintes informações de produtos fornecidas abaixo:

        {about}
        
        Crie um discurso muito convincente e interessante de venda para os seguintes produtos:
        
        {products}
        
        Que fazem parte da sub_categoria:
        
        {sub_category}
        
        Pontue bem as vantagens dos produtos e suas caracteristicas bem como a grande oportunidade que o cliente está tendo em adquiri-los
        
        Tenha como base os seguintes discursos de venda:
        
        {sales_pitch}
        
        Não fique preso apenas um discurso de venda. Leve mais em consideração a construção dos discrusos bem como as vantagens, caracterisitcas e descrição dos produtos.
        
        Adicione preços para os produtos como variáveis com prefixo _PRECO_
        
        Não se identifique e não coloque o nome da empresa
        """

        self.prompt = ChatPromptTemplate.from_template(template)

    def get_ml_product_descriptions(self):
        f = open('/data/ml_categories.json', 'r')

        categories_json = json.load(f)

        df = pd.read_csv('/data/mercado_livre_products.csv')

        for item in categories_json:
            category = {'name': categories_json[item]['name'], 'id': categories_json[item]['id']}

            for sub_category in categories_json[item]['children_categories']:
                offset = 0
                limit = 50
                while offset < 1000:

                    headers = {'Authorization': f'Bearer {self.TOKEN_ML}'}
                    ans = \
                        requests.get(f"https://api.mercadolibre.com/sites/MLB/search?category="
                                     f"{sub_category['id']}&search_type=scan&offset={offset}&limit=50",
                                     headers=headers)

                    if ans.ok:
                        data_ans = ans.json()

                        print(
                            f"[{sub_category['name']}]: {100.0 * (offset / int(data_ans['paging']['total']))}"
                            f" downloaded...")

                        if len(data_ans['results']) == 0:
                            break

                        lt_prod_info = [{'id': info['id'], 'title': info['title']} for info in data_ans['results']]

                        for info in lt_prod_info:
                            resp = requests.get(f"https://api.mercadolibre.com/items/{info['id']}/description",
                                                headers=headers)

                            if resp.ok:
                                data_resp = resp.json()
                                if 'plain_text' in data_resp:
                                    info['description'] = data_resp['plain_text']

                        df_tmp = pd.DataFrame.from_dict(lt_prod_info)
                        df_tmp['category'] = category['name']
                        df_tmp['sub_category'] = sub_category['name']

                        df: pd.DataFrame = pd.concat([df, df_tmp])

                        df.to_csv('/data/mercado_livre_products.csv', header=True, index=False)
                    else:
                        print(f'FAIL! Error {ans.status_code}: {ans.content}')

                    offset = offset + limit + 1

    @staticmethod
    def enrich_with_google_search():
        df = pd.read_csv('/data/mercado_livre_products.csv', low_memory=False)

        df.to_csv('/data/mercado_livre_products_enriched_with_google_about.csv', header=True, index=False)

        p_names = list(set(df['title'].to_list()))
        map_name = {}
        k = 0

        for name in p_names:
            url = 'https://www.google.com/search?q=' + quote('sobre ou descrição: ' + name)

            req = Request(url, headers={'User-Agent': 'Mozilla/5.0'})

            lt_text = []

            try:
                response = urllib.request.urlopen(req)

                if response.code == 429:
                    print(f'Sleeping {int(response.headers["Retry-After"])} seconds...')
                    time.sleep(int(response.headers["Retry-After"]))

                content = response.read().decode('UTF-8').replace(u'\xa0', u' ')

                soup = BeautifulSoup(content, 'html.parser')

                div_bs4 = soup.find_all('div', {"class": "BNeawe s3v9rd AP7Wnd"})

                lt_text = [p.get_text() for p in div_bs4]
            except Exception as error:
                print(error)

            map_name[name] = ', '.join(lt_text)

            df2 = pd.read_csv('/data/mercado_livre_products_enriched_with_google_about.csv', low_memory=False)

            df2['about'] = df2[['title', 'about']].apply(
                lambda x: map_name[x[0]] if ((x[0] in map_name.keys()) and (x[1] is None)) else x[1], axis=1)

            df2.to_csv('/data/mercado_livre_products_enriched_with_google_about.csv', header=True, index=False)

            k = k + 1
            print(f'[{k} of {len(p_names)}]: {(k / len(p_names)) * 100.0}% completed')

            time.sleep(1)

    def cleans_and_preprocesses_the_data(self) -> pd.DataFrame:
        df_ml = pd.read_csv('/data/mercado_livre_products_enriched_with_google_about.csv', low_memory=False)
        df_ml = df_ml[~(df_ml['description'].isna() | df_ml['about'].isna())]

        df_ml['description'] = df_ml['description'].apply(lambda x: self.__clean_txt(x))
        df_ml['description'] = df_ml['description'].apply(lambda x: x[0: self.__find_best_position_to_cut(x) + 1])
        df_ml['about'] = df_ml['about'].apply(lambda x: x[0: self.__find_best_position_to_cut(x) + 1])

        df_ml['size'] = df_ml['description'].apply(lambda x: self.__count_tokens(x))

        df_ml = df_ml.sort_values(by=['size'], ascending=False)

        df_ml = df_ml.reset_index(drop=True)

        df_ml['sales_pitch'] = df_ml[['title', 'sub_category', 'description']].apply(
            lambda x: f'Nome do produto:{x[0]}\nCategoria do produto:{x[1]}\nSugestão de como vender:{x[2]}', axis=1)
        df_ml['about'] = df_ml[['title', 'sub_category', 'about']].apply(
            lambda x: f'Nome do produto:{x[0]}\nCategoria do produto:{x[1]}\nSobre o produto:{x[2]}', axis=1)

        # df_ml['sales_pitch'] = df_ml['sales_pitch'].apply(lambda x: self.__chat_gpt_summarize(x))
        # map_about = {}
        # lt_about = list(df_ml[['id', 'about']].apply(lambda x: {'id': x[0], 'about': x[1]}, axis=1).to_list())

        # for about in lt_about:
        #   map_about[about['id']] = self.__chat_gpt_summarize(about['about'])

        # df_ml['about'] = df_ml['about'].map(map_about)

        df_ml = df_ml[['title', 'category', 'sub_category', 'sales_pitch', 'about']]

        return df_ml

    def embedding(self, df_ml: pd.DataFrame = pd.DataFrame(), add_docs=False):

        if add_docs:
            loader_sales_pitch = DataFrameLoader(df_ml, page_content_column="sales_pitch")
            documents_sales_pitch = loader_sales_pitch.load()
            documents_sales_pitch.extend(loader_sales_pitch.load_and_split())

            loader_about = DataFrameLoader(df_ml, page_content_column="about")
            documents_about = loader_about.load()
            documents_about.extend(loader_about.load_and_split())

            text_splitter = CharacterTextSplitter(chunk_size=2000, separator='\n', chunk_overlap=0)

            docs_sales_pitch = text_splitter.split_documents(documents_sales_pitch)
            docs_about = text_splitter.split_documents(documents_sales_pitch)
        else:
            docs_sales_pitch = None
            docs_about = None

        embeddings = HuggingFaceEmbeddings()

        from langchain.vectorstores.deeplake import DeepLake
        vector_store_sales_pitch = \
            DeepLake(dataset_path="data/my_deeplake/sales_pitch/", embedding_function=embeddings, read_only=True)

        vector_store_about = \
            DeepLake(dataset_path="data/my_deeplake/about/", embedding_function=embeddings, read_only=True)

        if add_docs:
            vector_store_sales_pitch.add_documents(docs_sales_pitch)
            vector_store_about.add_documents(docs_about)

        self.retriever_sales_pitch = vector_store_sales_pitch.as_retriever()
        self.retriever_about = vector_store_about.as_retriever()

    def generate_sales_pitch(self, query: dict) -> str:

        chain = RunnableParallel({
            "sales_pitch": lambda x: self.retriever_sales_pitch.get_relevant_documents(x["products"])[0:1],
            "about": lambda x: self.retriever_about.get_relevant_documents(x["products"])[0:1],
            "products": lambda x: x["products"],
            "sub_category": lambda x: x["sub_category"]
        }) | self.prompt | self.model | self.output_parser

        return chain.invoke(query)

    @staticmethod
    def __count_tokens(text):
        encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
        return len(encoding.encode(text))

    def __text_to_chunks(self, text):
        chunks = [[]]
        chunk_total_words = 0

        sentences = self.nlp(text)

        for sentence in sentences.sents:
            chunk_total_words += len(sentence.text.split(" "))

            if chunk_total_words > 2000:
                chunks.append([])
                chunk_total_words = len(sentence.text.split(" "))

            chunks[len(chunks) - 1].append(sentence.text)

        return chunks

    def __chat_gpt_summarize(self, text):
        prompt = f"Resuma o seguinte texto em no máximo 5 frases:\n{text}"

        response = self.client.completions.create(
            model="gpt-3.5-turbo-instruct",
            prompt=prompt,
            temperature=0.3,
            max_tokens=150,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=1
        )

        return response.choices[0].text

    def __summarize_text(self, text):
        chunks = self.__text_to_chunks(text)

        chunk_summaries = []

        for chunk in chunks:
            chunk_summary = self.__chat_gpt_summarize(" ".join(chunk))
            chunk_summaries.append(chunk_summary)
            break

        summary = " ".join(chunk_summaries)

        return summary

    def __find_best_position_to_cut(self, text):
        lo = 0
        hi = len(text) - 1
        mid = hi

        while lo <= hi:
            mid = (lo + hi) >> 1

            if self.__count_tokens(text[0:mid]) >= 1000:
                hi = mid - 1
            else:
                lo = mid + 1

        return mid

    @staticmethod
    def __clean_txt(txt):
        while txt.find('\n\n') != -1:
            txt = txt.replace('\n\n', '\n')
        while txt.find('--') != -1:
            txt = txt.replace('--', '-')
        while txt.find('  ') != -1:
            txt = txt.replace('  ', ' ')
        while txt.find('__') != -1:
            txt = txt.replace('__', '_')
        while txt.find('\n_\n') != -1:
            txt = txt.replace('\n_\n', '\n')
        while txt.find('\n \n') != -1:
            txt = txt.replace('\n \n', '\n')
        return txt