Spaces:
Sleeping
Sleeping
File size: 12,259 Bytes
57a506a d10277a 57a506a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import time
import urllib
import spacy
import pandas as pd
import unicodedata
import requests
import json
import os
import tiktoken
from bs4 import BeautifulSoup
from openai import OpenAI
from langchain.document_loaders import DataFrameLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
# from langchain.vectorstores.deeplake import DeepLake
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel
from urllib.parse import quote
from urllib.request import Request
class MLSalesPitch:
def __init__(self):
self.retriever_sales_pitch = None
self.retriever_about = None
self.TOKEN_ML = None#os.environ['TOKEN_ML']
self.OPENAI_API_KEY = os.environ['OPENAI_KEY']
self.client = OpenAI()
self.nlp = None#spacy.load("pt_core_news_sm")
OpenAI.api_key = self.OPENAI_API_KEY
self.output_parser = StrOutputParser()
self.model = ChatOpenAI(openai_api_key=self.OPENAI_API_KEY, model="gpt-3.5-turbo")
template = """Com base nas seguintes informações de produtos fornecidas abaixo:
{about}
Crie um discurso muito convincente e interessante de venda para os seguintes produtos:
{products}
Que fazem parte da sub_categoria:
{sub_category}
Pontue bem as vantagens dos produtos e suas caracteristicas bem como a grande oportunidade que o cliente está tendo em adquiri-los
Tenha como base os seguintes discursos de venda:
{sales_pitch}
Não fique preso apenas um discurso de venda. Leve mais em consideração a construção dos discrusos bem como as vantagens, caracterisitcas e descrição dos produtos.
Adicione preços para os produtos como variáveis com prefixo _PRECO_
Não se identifique e não coloque o nome da empresa
"""
self.prompt = ChatPromptTemplate.from_template(template)
def get_ml_product_descriptions(self):
f = open('/data/ml_categories.json', 'r')
categories_json = json.load(f)
df = pd.read_csv('/data/mercado_livre_products.csv')
for item in categories_json:
category = {'name': categories_json[item]['name'], 'id': categories_json[item]['id']}
for sub_category in categories_json[item]['children_categories']:
offset = 0
limit = 50
while offset < 1000:
headers = {'Authorization': f'Bearer {self.TOKEN_ML}'}
ans = \
requests.get(f"https://api.mercadolibre.com/sites/MLB/search?category="
f"{sub_category['id']}&search_type=scan&offset={offset}&limit=50",
headers=headers)
if ans.ok:
data_ans = ans.json()
print(
f"[{sub_category['name']}]: {100.0 * (offset / int(data_ans['paging']['total']))}"
f" downloaded...")
if len(data_ans['results']) == 0:
break
lt_prod_info = [{'id': info['id'], 'title': info['title']} for info in data_ans['results']]
for info in lt_prod_info:
resp = requests.get(f"https://api.mercadolibre.com/items/{info['id']}/description",
headers=headers)
if resp.ok:
data_resp = resp.json()
if 'plain_text' in data_resp:
info['description'] = data_resp['plain_text']
df_tmp = pd.DataFrame.from_dict(lt_prod_info)
df_tmp['category'] = category['name']
df_tmp['sub_category'] = sub_category['name']
df: pd.DataFrame = pd.concat([df, df_tmp])
df.to_csv('/data/mercado_livre_products.csv', header=True, index=False)
else:
print(f'FAIL! Error {ans.status_code}: {ans.content}')
offset = offset + limit + 1
@staticmethod
def enrich_with_google_search():
df = pd.read_csv('/data/mercado_livre_products.csv', low_memory=False)
df.to_csv('/data/mercado_livre_products_enriched_with_google_about.csv', header=True, index=False)
p_names = list(set(df['title'].to_list()))
map_name = {}
k = 0
for name in p_names:
url = 'https://www.google.com/search?q=' + quote('sobre ou descrição: ' + name)
req = Request(url, headers={'User-Agent': 'Mozilla/5.0'})
lt_text = []
try:
response = urllib.request.urlopen(req)
if response.code == 429:
print(f'Sleeping {int(response.headers["Retry-After"])} seconds...')
time.sleep(int(response.headers["Retry-After"]))
content = response.read().decode('UTF-8').replace(u'\xa0', u' ')
soup = BeautifulSoup(content, 'html.parser')
div_bs4 = soup.find_all('div', {"class": "BNeawe s3v9rd AP7Wnd"})
lt_text = [p.get_text() for p in div_bs4]
except Exception as error:
print(error)
map_name[name] = ', '.join(lt_text)
df2 = pd.read_csv('/data/mercado_livre_products_enriched_with_google_about.csv', low_memory=False)
df2['about'] = df2[['title', 'about']].apply(
lambda x: map_name[x[0]] if ((x[0] in map_name.keys()) and (x[1] is None)) else x[1], axis=1)
df2.to_csv('/data/mercado_livre_products_enriched_with_google_about.csv', header=True, index=False)
k = k + 1
print(f'[{k} of {len(p_names)}]: {(k / len(p_names)) * 100.0}% completed')
time.sleep(1)
def cleans_and_preprocesses_the_data(self) -> pd.DataFrame:
df_ml = pd.read_csv('/data/mercado_livre_products_enriched_with_google_about.csv', low_memory=False)
df_ml = df_ml[~(df_ml['description'].isna() | df_ml['about'].isna())]
df_ml['description'] = df_ml['description'].apply(lambda x: self.__clean_txt(x))
df_ml['description'] = df_ml['description'].apply(lambda x: x[0: self.__find_best_position_to_cut(x) + 1])
df_ml['about'] = df_ml['about'].apply(lambda x: x[0: self.__find_best_position_to_cut(x) + 1])
df_ml['size'] = df_ml['description'].apply(lambda x: self.__count_tokens(x))
df_ml = df_ml.sort_values(by=['size'], ascending=False)
df_ml = df_ml.reset_index(drop=True)
df_ml['sales_pitch'] = df_ml[['title', 'sub_category', 'description']].apply(
lambda x: f'Nome do produto:{x[0]}\nCategoria do produto:{x[1]}\nSugestão de como vender:{x[2]}', axis=1)
df_ml['about'] = df_ml[['title', 'sub_category', 'about']].apply(
lambda x: f'Nome do produto:{x[0]}\nCategoria do produto:{x[1]}\nSobre o produto:{x[2]}', axis=1)
# df_ml['sales_pitch'] = df_ml['sales_pitch'].apply(lambda x: self.__chat_gpt_summarize(x))
# map_about = {}
# lt_about = list(df_ml[['id', 'about']].apply(lambda x: {'id': x[0], 'about': x[1]}, axis=1).to_list())
# for about in lt_about:
# map_about[about['id']] = self.__chat_gpt_summarize(about['about'])
# df_ml['about'] = df_ml['about'].map(map_about)
df_ml = df_ml[['title', 'category', 'sub_category', 'sales_pitch', 'about']]
return df_ml
def embedding(self, df_ml: pd.DataFrame = pd.DataFrame(), add_docs=False):
if add_docs:
loader_sales_pitch = DataFrameLoader(df_ml, page_content_column="sales_pitch")
documents_sales_pitch = loader_sales_pitch.load()
documents_sales_pitch.extend(loader_sales_pitch.load_and_split())
loader_about = DataFrameLoader(df_ml, page_content_column="about")
documents_about = loader_about.load()
documents_about.extend(loader_about.load_and_split())
text_splitter = CharacterTextSplitter(chunk_size=2000, separator='\n', chunk_overlap=0)
docs_sales_pitch = text_splitter.split_documents(documents_sales_pitch)
docs_about = text_splitter.split_documents(documents_sales_pitch)
else:
docs_sales_pitch = None
docs_about = None
embeddings = HuggingFaceEmbeddings()
from langchain.vectorstores.deeplake import DeepLake
vector_store_sales_pitch = \
DeepLake(dataset_path="data/my_deeplake/sales_pitch/", embedding_function=embeddings, read_only=True)
vector_store_about = \
DeepLake(dataset_path="data/my_deeplake/about/", embedding_function=embeddings, read_only=True)
if add_docs:
vector_store_sales_pitch.add_documents(docs_sales_pitch)
vector_store_about.add_documents(docs_about)
self.retriever_sales_pitch = vector_store_sales_pitch.as_retriever()
self.retriever_about = vector_store_about.as_retriever()
def generate_sales_pitch(self, query: dict) -> str:
chain = RunnableParallel({
"sales_pitch": lambda x: self.retriever_sales_pitch.get_relevant_documents(x["products"])[0:1],
"about": lambda x: self.retriever_about.get_relevant_documents(x["products"])[0:1],
"products": lambda x: x["products"],
"sub_category": lambda x: x["sub_category"]
}) | self.prompt | self.model | self.output_parser
return chain.invoke(query)
@staticmethod
def __count_tokens(text):
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
return len(encoding.encode(text))
def __text_to_chunks(self, text):
chunks = [[]]
chunk_total_words = 0
sentences = self.nlp(text)
for sentence in sentences.sents:
chunk_total_words += len(sentence.text.split(" "))
if chunk_total_words > 2000:
chunks.append([])
chunk_total_words = len(sentence.text.split(" "))
chunks[len(chunks) - 1].append(sentence.text)
return chunks
def __chat_gpt_summarize(self, text):
prompt = f"Resuma o seguinte texto em no máximo 5 frases:\n{text}"
response = self.client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=prompt,
temperature=0.3,
max_tokens=150,
top_p=1,
frequency_penalty=0,
presence_penalty=1
)
return response.choices[0].text
def __summarize_text(self, text):
chunks = self.__text_to_chunks(text)
chunk_summaries = []
for chunk in chunks:
chunk_summary = self.__chat_gpt_summarize(" ".join(chunk))
chunk_summaries.append(chunk_summary)
break
summary = " ".join(chunk_summaries)
return summary
def __find_best_position_to_cut(self, text):
lo = 0
hi = len(text) - 1
mid = hi
while lo <= hi:
mid = (lo + hi) >> 1
if self.__count_tokens(text[0:mid]) >= 1000:
hi = mid - 1
else:
lo = mid + 1
return mid
@staticmethod
def __clean_txt(txt):
while txt.find('\n\n') != -1:
txt = txt.replace('\n\n', '\n')
while txt.find('--') != -1:
txt = txt.replace('--', '-')
while txt.find(' ') != -1:
txt = txt.replace(' ', ' ')
while txt.find('__') != -1:
txt = txt.replace('__', '_')
while txt.find('\n_\n') != -1:
txt = txt.replace('\n_\n', '\n')
while txt.find('\n \n') != -1:
txt = txt.replace('\n \n', '\n')
return txt
|