Spaces:
Runtime error
Runtime error
File size: 17,120 Bytes
3f4baa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# Copyright 2023 Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.attention import FeedForward, CrossAttention, AdaLayerNorm
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.cross_attention import XFormersCrossAttnProcessor
from einops import rearrange
@dataclass
class SpatioTemporalTransformerModelOutput(BaseOutput):
"""torch.FloatTensor of shape [batch x channel x frames x height x width]"""
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class SpatioTemporalTransformerModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
**transformer_kwargs,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
SpatioTemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
**transformer_kwargs,
)
for d in range(num_layers)
]
)
# Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def forward(
self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True
):
# 1. Input
clip_length = None
is_video = hidden_states.ndim == 5
if is_video:
clip_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
encoder_hidden_states = encoder_hidden_states.repeat_interleave(clip_length, 0)
*_, h, w = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
else:
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
clip_length=clip_length,
)
# 3. Output
if not self.use_linear_projection:
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous()
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous()
output = hidden_states + residual
if is_video:
output = rearrange(output, "(b f) c h w -> b c f h w", f=clip_length)
if not return_dict:
return (output,)
return SpatioTemporalTransformerModelOutput(sample=output)
class SpatioTemporalTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
use_sparse_causal_attention: bool = False,
use_full_sparse_causal_attention: bool = True,
temporal_attention_position: str = "after_feedforward",
use_gamma = False,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.use_sparse_causal_attention = use_sparse_causal_attention
self.use_full_sparse_causal_attention = use_full_sparse_causal_attention
self.use_gamma = use_gamma
self.temporal_attention_position = temporal_attention_position
temporal_attention_positions = ["after_spatial", "after_cross", "after_feedforward"]
if temporal_attention_position not in temporal_attention_positions:
raise ValueError(
f"`temporal_attention_position` must be one of {temporal_attention_positions}"
)
# 1. Spatial-Attn
if use_sparse_causal_attention:
spatial_attention = SparseCausalAttention
elif use_full_sparse_causal_attention:
spatial_attention = SparseCausalFullAttention
else:
spatial_attention = CrossAttention
self.attn1 = spatial_attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
processor=XFormersCrossAttnProcessor(),
) # is a self-attention
self.norm1 = (
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
)
if use_gamma:
self.attn1_gamma = nn.Parameter(torch.ones(dim))
# 2. Cross-Attn
if cross_attention_dim is not None:
self.attn2 = CrossAttention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
processor=XFormersCrossAttnProcessor(),
) # is self-attn if encoder_hidden_states is none
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
)
if use_gamma:
self.attn2_gamma = nn.Parameter(torch.ones(dim))
else:
self.attn2 = None
self.norm2 = None
# 3. Temporal-Attn
self.attn_temporal = CrossAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
processor=XFormersCrossAttnProcessor()
)
zero_module(self.attn_temporal) # 默认参数置0
self.norm_temporal = (
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
)
# 4. Feed-forward
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
if use_gamma:
self.ff_gamma = nn.Parameter(torch.ones(dim))
def forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
attention_mask=None,
clip_length=None,
):
# 1. Self-Attention
norm_hidden_states = (
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
)
kwargs = dict(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
)
if self.only_cross_attention:
kwargs.update(encoder_hidden_states=encoder_hidden_states)
if self.use_sparse_causal_attention or self.use_full_sparse_causal_attention:
kwargs.update(clip_length=clip_length)
if self.use_gamma:
hidden_states = hidden_states + self.attn1(**kwargs) * self.attn1_gamma # NOTE gamma
else:
hidden_states = hidden_states + self.attn1(**kwargs)
if clip_length is not None and self.temporal_attention_position == "after_spatial":
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
if self.attn2 is not None:
# 2. Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
if self.use_gamma:
hidden_states = (
self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
) * self.attn2_gamma
+ hidden_states
)
else:
hidden_states = (
self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
)
+ hidden_states
)
if clip_length is not None and self.temporal_attention_position == "after_cross":
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
# 3. Feed-forward
if self.use_gamma:
hidden_states = self.ff(self.norm3(hidden_states)) * self.ff_gamma + hidden_states
else:
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
if clip_length is not None and self.temporal_attention_position == "after_feedforward":
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
return hidden_states
def apply_temporal_attention(self, hidden_states, timestep, clip_length):
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=clip_length)
norm_hidden_states = (
self.norm_temporal(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm_temporal(hidden_states)
)
hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
class SparseCausalAttention(CrossAttention):
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
clip_length: int = None,
):
if (
self.added_kv_proj_dim is not None
or encoder_hidden_states is not None
or attention_mask is not None
):
raise NotImplementedError
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.head_to_batch_dim(query) # 64 4096 40
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
if clip_length is not None and clip_length > 1:
# spatial temporal
prev_frame_index = torch.arange(clip_length) - 1
prev_frame_index[0] = 0
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)
key = torch.cat([key[:, [0] * clip_length], key[:, prev_frame_index]], dim=2)
key = rearrange(key, "b f d c -> (b f) d c", f=clip_length)
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)
value = torch.cat([value[:, [0] * clip_length], value[:, prev_frame_index]], dim=2)
value = rearrange(value, "b f d c -> (b f) d c", f=clip_length)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
# use xfromers by default~
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=attention_mask, op=None
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
class SparseCausalFullAttention(CrossAttention):
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
clip_length: int = None,
):
if (
self.added_kv_proj_dim is not None
or encoder_hidden_states is not None
or attention_mask is not None
):
raise NotImplementedError
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.head_to_batch_dim(query) # 64 4096 40
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
if clip_length is not None and clip_length > 1:
# 和所有帧做 spatial temporal attention
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)
# cat full frames
key = torch.cat([key[:, [iii] * clip_length] for iii in range(clip_length) ], dim=2) # concat第一帧+第i帧。以此为key, value。而非自己这一帧。
key = rearrange(key, "b f d c -> (b f) d c", f=clip_length)
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)
value = torch.cat([value[:, [iii] * clip_length] for iii in range(clip_length) ], dim=2) # concat第一帧+第i帧。以此为key, value。而非自己这一帧。
value = rearrange(value, "b f d c -> (b f) d c", f=clip_length)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
# use xfromers by default~
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=attention_mask, op=None
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module |