RIP-AV-su-lab / app.py
weidai00's picture
Update app.py
2d8e012 verified
raw
history blame
15.6 kB
import torch
import gradio as gr
from PIL import Image
import cv2
from AV.models.network import PGNet
from AV.Tools.AVclassifiation import AVclassifiation
from AV.Tools.utils_test import paint_border_overlap, extract_ordered_overlap_big, Normalize, sigmoid, recompone_overlap, \
kill_border
from AV.config import config_test_general as cfg
import torch.autograd as autograd
import numpy as np
import os
from datetime import datetime
from huggingface_hub import hf_hub_download
hf_token = os.environ.get("HF_token")
def creatMask(Image, threshold=5):
##This program try to creat the mask for the filed-of-view
##Input original image (RGB or green channel), threshold (user set parameter, default 10)
##Output: the filed-of-view mask
if len(Image.shape) == 3: ##RGB image
gray = cv2.cvtColor(Image, cv2.COLOR_BGR2GRAY)
Mask0 = gray >= threshold
else: # for green channel image
Mask0 = Image >= threshold
# ######get the largest blob, this takes 0.18s
cvVersion = int(cv2.__version__.split('.')[0])
Mask0 = np.uint8(Mask0)
contours, hierarchy = cv2.findContours(Mask0, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
areas = [cv2.contourArea(c) for c in contours]
max_index = np.argmax(areas)
Mask = np.zeros(Image.shape[:2], dtype=np.uint8)
cv2.drawContours(Mask, contours, max_index, 1, -1)
ResultImg = Image.copy()
if len(Image.shape) == 3:
ResultImg[Mask == 0] = (255, 255, 255)
else:
ResultImg[Mask == 0] = 255
Mask[Mask > 0] = 255
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
Mask = cv2.morphologyEx(Mask, cv2.MORPH_OPEN, kernel, iterations=3)
return ResultImg, Mask
def shift_rgb(img, *args):
result_img = np.empty_like(img)
shifts = args
max_value = 255
# print(shifts)
for i, shift in enumerate(shifts):
lut = np.arange(0, max_value + 1).astype("float32")
lut += shift
lut = np.clip(lut, 0, max_value).astype(img.dtype)
if len(img.shape) == 2:
print(f'=========grey image=======')
result_img = cv2.LUT(img, lut)
else:
result_img[..., i] = cv2.LUT(img[..., i], lut)
return result_img
def CAM(x, img_path, rate=0.8, ind=0):
"""
:param dataset_path: 计算整个训练数据集的平均RGB通道值
:param image: array, 单张图片的array 形式
:return: array形式的cam后的结果
"""
# 每次使用新数据集时都需要重新计算前面的RBG平均值
# RGB-->Rshift-->CLAHE
x = np.uint8(x)
_, Mask0 = creatMask(x, threshold=10)
Mask = np.zeros((x.shape[0], x.shape[1]), np.float32)
Mask[Mask0 > 0] = 1
resize = False
R_mea_num, G_mea_num, B_mea_num = [], [], []
dataset_path = img_path
image = np.array(Image.open(dataset_path))
R_mea_num.append(np.mean(image[:, :, 0]))
G_mea_num.append(np.mean(image[:, :, 1]))
B_mea_num.append(np.mean(image[:, :, 2]))
mea2stand = int((np.mean(R_mea_num) - np.mean(x[:, :, 0])) * rate)
mea2standg = int((np.mean(G_mea_num) - np.mean(x[:, :, 1])) * rate)
mea2standb = int((np.mean(B_mea_num) - np.mean(x[:, :, 2])) * rate)
y = shift_rgb(x, mea2stand, mea2standg, mea2standb)
y[Mask == 0, :] = 0
return y
def modelEvalution_out_big(net, use_cuda=False, dataset='', is_kill_border=True, input_ch=3,
config=None, output_dir='', evaluate_metrics=False):
# path for images to save
n_classes = 3
Net = PGNet(use_global_semantic=config.use_global_semantic, input_ch=input_ch,
num_classes=n_classes, use_cuda=use_cuda, pretrained=False, centerness=config.use_centerness,
centerness_map_size=config.centerness_map_size)
msg = Net.load_state_dict(net, strict=False)
if use_cuda:
Net.cuda()
Net.eval()
image_basename = dataset
# if not os.path.exists(output_dir):
# os.makedirs(output_dir)
step = 1
# every step of between star and end for loop until len(image_basename)
# for start_end in start_end_list:
image0 = cv2.imread(image_basename)
test_image_height = image0.shape[0]
test_image_width = image0.shape[1]
if config.use_resize:
if min(test_image_height, test_image_width) <= 256:
scaling = 512 / min(test_image_height, test_image_width)
new_width = int(test_image_width * scaling)
new_height = int(test_image_height * scaling)
test_image_width, test_image_height = new_width, new_height
# 大尺寸处理:确保最长边≤1536
elif max(test_image_height, test_image_width) >= 2048:
scaling = 2048 / max(test_image_height, test_image_width)
new_width = int(test_image_width * scaling)
new_height = int(test_image_height * scaling)
test_image_width, test_image_height = new_width, new_height
ArteryPredAll = np.zeros((1, 1, test_image_height, test_image_width), np.float32)
VeinPredAll = np.zeros((1, 1, test_image_height, test_image_width), np.float32)
VesselPredAll = np.zeros((1, 1, test_image_height, test_image_width), np.float32)
ProMap = np.zeros((1, 3, test_image_height, test_image_width), np.float32)
MaskAll = np.zeros((1, 1, test_image_height, test_image_width), np.float32)
ArteryPred, VeinPred, VesselPred, Mask, LabelArtery, LabelVein, LabelVessel = GetResult_out_big(Net, 0,
use_cuda=use_cuda,
dataset=image_basename,
is_kill_border=is_kill_border,
config=config,
resize_w_h=(
test_image_width,
test_image_height)
)
ArteryPredAll[0 % step, :, :, :] = ArteryPred
VeinPredAll[0 % step, :, :, :] = VeinPred
VesselPredAll[0 % step, :, :, :] = VesselPred
MaskAll[0 % step, :, :, :] = Mask
image_color = AVclassifiation(output_dir, ArteryPredAll, VeinPredAll, VesselPredAll, 1, image_basename)
return image_color
def GetResult_out_big(Net, k, use_cuda=False, dataset='', is_kill_border=False, config=None,
resize_w_h=None):
ImgName = dataset
Img0 = cv2.imread(ImgName)
_, Mask0 = creatMask(Img0, threshold=-1)
Mask = np.zeros((Img0.shape[0], Img0.shape[1]), np.float32)
Mask[Mask0 > 0] = 1
if config.use_resize:
Img0 = cv2.resize(Img0, resize_w_h)
Mask = cv2.resize(Mask, resize_w_h, interpolation=cv2.INTER_NEAREST)
Img = Img0
height, width = Img.shape[:2]
n_classes = 3
patch_height = config.patch_size
patch_width = config.patch_size
stride_height = config.stride_height
stride_width = config.stride_width
Img = cv2.cvtColor(Img, cv2.COLOR_BGR2RGB)
if cfg.dataset == 'all':
# # # 将图像转换为 LAB 颜色空间
lab = cv2.cvtColor(Img, cv2.COLOR_RGB2LAB)
# 拆分 LAB 通道
l, a, b = cv2.split(lab)
# 创建 CLAHE 对象并应用到 L 通道
clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(8, 8))
l_clahe = clahe.apply(l)
# 将 CLAHE 处理后的 L 通道与原始的 A 和 B 通道合并
lab_clahe = cv2.merge((l_clahe, a, b))
# 将图像转换回 BGR 颜色空间
Img = cv2.cvtColor(lab_clahe, cv2.COLOR_LAB2RGB)
if cfg.use_CAM:
Img = CAM(Img, dataset)
Img = np.float32(Img / 255.)
Img_enlarged = paint_border_overlap(Img, patch_height, patch_width, stride_height, stride_width)
patch_size = config.patch_size
batch_size = 2
patches_imgs, global_images = extract_ordered_overlap_big(Img_enlarged, patch_height, patch_width,
stride_height,
stride_width)
patches_imgs = np.transpose(patches_imgs, (0, 3, 1, 2))
patches_imgs = Normalize(patches_imgs)
global_images = np.transpose(global_images, (0, 3, 1, 2))
global_images = Normalize(global_images)
patchNum = patches_imgs.shape[0]
max_iter = int(np.ceil(patchNum / float(batch_size)))
pred_patches = np.zeros((patchNum, n_classes, patch_size, patch_size), np.float32)
for i in range(max_iter):
begin_index = i * batch_size
end_index = (i + 1) * batch_size
patches_temp1 = patches_imgs[begin_index:end_index, :, :, :]
patches_input_temp1 = torch.FloatTensor(patches_temp1)
global_input_temp1 = patches_input_temp1
if config.use_global_semantic:
global_temp1 = global_images[begin_index:end_index, :, :, :]
global_input_temp1 = torch.FloatTensor(global_temp1)
if use_cuda:
patches_input_temp1 = autograd.Variable(patches_input_temp1.cuda())
if config.use_global_semantic:
global_input_temp1 = autograd.Variable(global_input_temp1.cuda())
else:
patches_input_temp1 = autograd.Variable(patches_input_temp1)
if config.use_global_semantic:
global_input_temp1 = autograd.Variable(global_input_temp1)
output_temp, _1, = Net(patches_input_temp1, global_input_temp1)
pred_patches_temp = np.float32(output_temp.data.cpu().numpy())
pred_patches_temp_sigmoid = sigmoid(pred_patches_temp)
pred_patches[begin_index:end_index, :, :, :] = pred_patches_temp_sigmoid[:, :, :patch_size, :patch_size]
del patches_input_temp1
del pred_patches_temp
del patches_temp1
del output_temp
del pred_patches_temp_sigmoid
new_height, new_width = Img_enlarged.shape[0], Img_enlarged.shape[1]
pred_img = recompone_overlap(pred_patches, new_height, new_width, stride_height, stride_width) # predictions
pred_img = pred_img[:, 0:height, 0:width]
if is_kill_border:
pred_img = kill_border(pred_img, Mask)
ArteryPred = np.float32(pred_img[0, :, :])
VeinPred = np.float32(pred_img[2, :, :])
VesselPred = np.float32(pred_img[1, :, :])
ArteryPred = ArteryPred[np.newaxis, :, :]
VeinPred = VeinPred[np.newaxis, :, :]
VesselPred = VesselPred[np.newaxis, :, :]
Mask = Mask[np.newaxis, :, :]
return ArteryPred, VeinPred, VesselPred, Mask, ArteryPred, VeinPred, VesselPred,
def out_test(cfg,model_path='', output_dir='', evaluate_metrics=False, img_name='out_test'):
device = torch.device("cuda" if cfg.use_cuda else "cpu")
model_path = model_path
net = torch.load(model_path, map_location=device)
image_color = modelEvalution_out_big(net,
use_cuda=cfg.use_cuda,
dataset=img_name,
input_ch=cfg.input_nc,
config=cfg,
output_dir=output_dir, evaluate_metrics=evaluate_metrics)
return image_color
def segment_by_out_test(image,model_name):
print("✅ 传到后端的模型名:", model_name)
model_path = hf_hub_download(
repo_id="weidai00/RIP-AV-sulab", # 模型库的名字
filename=f"G_{model_name}.pkl", # 文件名
repo_type="model", # 模型库必须写 repo_type
token=hf_token
)
cfg.set_dataset(model_name)
if image is None:
raise gr.Error("请上传一张图像(upload a fundus image)。")
os.makedirs("./examples", exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
temp_path = f"./examples/tmp_upload_{timestamp}.png"
image.save(temp_path)
image_color = out_test(cfg,model_path=model_path, output_dir='', evaluate_metrics=False, img_name=temp_path)
return Image.fromarray(image_color)
def gradio_interface():
model_info_md = """
### 📘 模型说明
| 模型(model name) | 数据集(dataset) | patch size |running time |
|------|--------|------------|--------|
| DRIVE | 小分辨率血管图像 | 256 |30s以内|
| HRF | 高分辨率图像(健康、青光眼等)| 256 | 2min以内|
| LES | 视盘中心图像适配 | 256 |2min以内|
| UKBB | UKBB图像 | 256 |2min以内 |
| 通用模型(512) | 超清图像,适配性强 | 512 |2min以内|
"""
model_choices = [
("1: DRIVE专用模型", "DRIVE"),
("2: HRF专用模型", "hrf"),
("3: LES专用模型","LES"),
("4: UKBB专用模型", "ukbb"),
("5: 通用模型(general)", "all"),
]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 👁️ 眼底图像动静脉血管分割(Retinal image artery and vein segmentation)")
gr.Markdown("上传眼底图像,选择一个模型开始处理,结果将自动生成。(Upload the retinal image, select a model to start processing, and the results will be generated automatically.)")
with gr.Row():
image_input = gr.Image(type="pil", label="📤 上传图像(upload)",height=300)
with gr.Row():
with gr.Column():
model_select = gr.Radio(
choices=model_choices,
label="🎯 选择模型",
value="DRIVE",
interactive = True
)
submit_btn = gr.Button("🚀 开始分割(RUN)")
with gr.Column():
output_image = gr.Image(label="🖼️ 分割结果(Result)")
gr.Markdown("### 📁 示例图像examples(点击自动加载)")
gr.Examples(
examples=[
["examples/DRIVE.tif", "DRIVE"],
["examples/LES.png", "LES"],
["examples/hrf.png", "hrf"],
["examples/ukbb.png", "ukbb"],
["examples/all.jpg", "all"]
],
inputs=[image_input, model_select],
label="示例图像",
examples_per_page=5
)
with gr.Accordion("📖 模型说明-Description(点击展开)", open=False):
gr.Markdown(model_info_md)
# 功能连接
submit_btn.click(
fn=segment_by_out_test,
inputs=[image_input, model_select],
outputs=[output_image]
)
gr.Markdown("📚 **专用模型引用cite**: RIP-AV: Joint Representative Instance Pre-training with Context Aware Network for Retinal Artery/Vein Segmentation")
gr.Markdown("📚 **通用模型引用cite**: An Efficient and Interpretable Foundation Model for Retinal Image Analysis in Disease Diagnosis.")
demo.queue()
demo.launch()
if __name__ == '__main__':
# cfg.set_dataset('all')
# image_color = out_test(cfg = cfg, evaluate_metrics=False, img_name=r'.\AV\data\AV-DRIVE\test\images\01_test.tif')
# Image.fromarray(image_color).save('image_color.png')
#print(cfg.patch_size)
gradio_interface()