Spaces:
Runtime error
Runtime error
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------ | |
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) | |
# Copyright 2024 Yanwei Li | |
# ------------------------------------------------------------------------ | |
import os | |
import warnings | |
import logging | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | |
import torch | |
from minigemini.model import * | |
from minigemini.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs): | |
kwargs = {"device_map": device_map, **kwargs} | |
if device != "cuda": | |
kwargs['device_map'] = {"": device} | |
if load_8bit: | |
kwargs['load_in_8bit'] = True | |
elif load_4bit: | |
kwargs['load_in_4bit'] = True | |
kwargs['quantization_config'] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type='nf4' | |
) | |
else: | |
kwargs['torch_dtype'] = torch.float16 | |
if use_flash_attn: | |
kwargs['attn_implementation'] = 'flash_attention_2' | |
logging.getLogger("transformers").setLevel(logging.ERROR) | |
if 'mgm' in model_name.lower(): | |
# Load MiniGemini model | |
if model_base is not None: | |
# this may be mm projector only | |
print('Loading MiniGemini from base model...') | |
if "8x7b" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_base) | |
model = MiniGeminiMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) | |
elif "2b" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_base) | |
model = MiniGeminiGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = MiniGeminiLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) | |
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') | |
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} | |
model.load_state_dict(mm_projector_weights, strict=False) | |
else: | |
if "8x7b" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = MiniGeminiMixtralForCausalLM.from_pretrained(model_path, **kwargs) | |
elif "2b" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = MiniGeminiGemmaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = MiniGeminiLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | |
else: | |
# Load language model | |
if model_base is not None: | |
# PEFT model | |
from peft import PeftModel | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) | |
print(f"Loading LoRA weights from {model_path}") | |
model = PeftModel.from_pretrained(model, model_path) | |
print(f"Merging weights") | |
model = model.merge_and_unload() | |
print('Convert to FP16...') | |
model.to(torch.float16) | |
else: | |
if 'mpt' in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | |
image_processor = None | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
vision_tower.to(device=device, dtype=torch.float16) | |
image_processor = vision_tower.image_processor | |
if 'mgm' in model_name.lower(): | |
vision_tower_aux = model.get_vision_tower_aux() | |
if not vision_tower_aux.is_loaded: | |
vision_tower_aux.load_model() | |
vision_tower_aux.to(device=device, dtype=torch.float16) | |
# initialize attention modules | |
model.config.model_path = model_path | |
model.get_model().initialize_uni_modules(model.config, for_eval=True) | |
model.get_model().vlm_uni_query_projector.to(device=device) | |
model.get_model().vlm_uni_aux_projector.to(device=device) | |
model.get_model().vlm_uni_val_projector.to(device=device) | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
logging.getLogger("transformers").setLevel(logging.WARNING) | |
return tokenizer, model, image_processor, context_len |