curelycue commited on
Commit
c245a44
1 Parent(s): 5bca31a

Initial commit

Browse files
Files changed (2) hide show
  1. app.py +28 -54
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,63 +1,37 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
+ # Load the tokenizer and model from Hugging Face
6
+ model_name = "waterdrops0/mistral-nouns600"
 
 
7
 
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
10
 
11
+ def generate_text(prompt, max_length=50, temperature=0.7):
12
+ inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
13
+ outputs = model.generate(
14
+ inputs,
15
+ max_length=max_length,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  temperature=temperature,
17
+ do_sample=True,
18
+ top_p=0.95,
19
+ top_k=60
20
+ )
21
+ text = tokenizer.decode(outputs[0], skip_special_tokens=True)
22
+ return text
23
+
24
+ iface = gr.Interface(
25
+ fn=generate_text,
26
+ inputs=[
27
+ gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
28
+ gr.inputs.Slider(10, 200, step=10, default=50, label="Max Length"),
29
+ gr.inputs.Slider(0.1, 1.0, step=0.1, default=0.7, label="Temperature")
 
 
 
 
 
 
 
 
 
 
30
  ],
31
+ outputs="text",
32
+ title="Mistral 7B Nouns Model",
33
+ description="Generate text using the fine-tuned Mistral 7B model."
34
  )
35
 
 
36
  if __name__ == "__main__":
37
+ iface.launch()
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.22.2
 
 
 
1
+ gradio
2
+ transformers
3
+ torch