Spaces:
Sleeping
Sleeping
File size: 1,981 Bytes
66f25b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
from langchain.vectorstores import Qdrant
from langchain.embeddings import HuggingFaceEmbeddings
from qdrant_client import QdrantClient
import gradio as gr
def process_text(input_text, top_k):
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-base")
client = QdrantClient(
path="./local_qdrant", prefer_grpc=True
)
db = Qdrant(client=client, embeddings=embeddings, collection_name="qa_data")
query = input_text
all_answers = []
docs = db.similarity_search_with_score(query=query, k=top_k)
for i in docs:
doc, score = i
print({"score": score, "content": doc.page_content, "metadata": doc.metadata} )
all_answers.append(doc.metadata["source"])
return "\n***\\n".join(all_answers)
CSS ="""
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#textbox { flex-grow: 1; overflow: auto; resize: vertical; }
.secondary {background-color: #6366f1; }
"""
#with gr.Blocks() as demo:
with gr.Blocks(theme=gr.themes.Monochrome(radius_size=gr.themes.sizes.radius_sm)) as demo:
with gr.Row():
gr.Markdown("# 裁定検索")
with gr.Row():
output = gr.TextArea(
elem_id="検索結果",
label="検索結果",
)
with gr.Row():
input = gr.Textbox(
label="質問",
placeholder="芸魔龍王アメイジンの出た時の効果は、後から出たクリーチャーも影響しますか",
lines=3,
)
with gr.Row():
submit = gr.Button(value="検索", variant="secondary").style(full_width=True)
top_k = gr.Slider(1, 10, label="表示数", step=1, value=5, interactive=True)
submit_click_event = submit.click(fn=process_text, inputs=[input, top_k], outputs=output)
demo.launch()
# demo.queue(max_size=128, concurrency_count=48).launch(debug=True, server_name="0.0.0.0", server_port=7860)
|