ONNXServies / VitsModelSplit /vits_model_only_d.py
wasmdashai's picture
model push
38f004a
import numpy as np
import torch
from torch import nn
import math
from typing import Any, Callable, Optional, Tuple, Union
from torch.cuda.amp import autocast, GradScaler
from .vits_config import VitsConfig,VitsPreTrainedModel
from .flow import VitsResidualCouplingBlock
from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
from .encoder import VitsTextEncoder
from .decoder import VitsHifiGan
from .posterior_encoder import VitsPosteriorEncoder
from .discriminator import VitsDiscriminator
from .vits_output import VitsModelOutput, VitsTrainingOutput
class Vits_models_only_decoder(VitsPreTrainedModel):
def __init__(self, config: VitsConfig):
super().__init__(config)
self.config = config
self.text_encoder = VitsTextEncoder(config)
self.flow = VitsResidualCouplingBlock(config)
self.decoder = VitsHifiGan(config)
if config.use_stochastic_duration_prediction:
self.duration_predictor = VitsStochasticDurationPredictor(config)
else:
self.duration_predictor = VitsDurationPredictor(config)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
# This is used only for training.
self.posterior_encoder = VitsPosteriorEncoder(config)
self.discriminator = VitsDiscriminator(config)
# These parameters control the synthesised speech properties
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
self.segment_size = self.config.segment_size // self.config.hop_length
# Initialize weights and apply final processing
self.post_init()
#....................................
def monotonic_align_max_path(self,log_likelihoods, mask):
# used for training - awfully slow
# an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
path = torch.zeros_like(log_likelihoods)
text_length_maxs = mask.sum(1)[:, 0]
latent_length_maxs = mask.sum(2)[:, 0]
indexes = latent_length_maxs - 1
max_neg_val = -1e9
for batch_id in range(len(path)):
index = int(indexes[batch_id].item())
text_length_max = int(text_length_maxs[batch_id].item())
latent_length_max = int(latent_length_maxs[batch_id].item())
for y in range(text_length_max):
for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
if x == y:
v_cur = max_neg_val
else:
v_cur = log_likelihoods[batch_id, y - 1, x]
if x == 0:
if y == 0:
v_prev = 0.0
else:
v_prev = max_neg_val
else:
v_prev = log_likelihoods[batch_id, y - 1, x - 1]
log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
for y in range(text_length_max - 1, -1, -1):
path[batch_id, y, index] = 1
if index != 0 and (
index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
):
index = index - 1
return path
#....................................
def slice_segments(self,hidden_states, ids_str, segment_size=4):
batch_size, channels, _ = hidden_states.shape
# 1d tensor containing the indices to keep
indices = torch.arange(segment_size).to(ids_str.device)
# extend the indices to match the shape of hidden_states
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
# offset indices with ids_str
indices = indices + ids_str.view(-1, 1, 1)
# gather indices
output = torch.gather(hidden_states, dim=2, index=indices)
return output
#....................................
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
batch_size, _, seq_len = hidden_states.size()
if sample_lengths is None:
sample_lengths = seq_len
ids_str_max = sample_lengths - segment_size + 1
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
ret = self.slice_segments(hidden_states, ids_str, segment_size)
return ret, ids_str
#....................................
def resize_speaker_embeddings(
self,
new_num_speakers: int,
speaker_embedding_size: Optional[int] = None,
pad_to_multiple_of: Optional[int] = 2,
):
if pad_to_multiple_of is not None:
new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
# first, take care of embed_speaker
if self.config.num_speakers <= 1:
if speaker_embedding_size is None:
raise ValueError(
"The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
)
# create new embedding layer
new_embeddings = nn.Embedding(
new_num_speakers,
speaker_embedding_size,
device=self.device,
)
# initialize all new embeddings
self._init_weights(new_embeddings)
else:
new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
self.embed_speaker = new_embeddings
# then take care of sub-models
self.flow.resize_speaker_embeddings(speaker_embedding_size)
for flow in self.flow.flows:
self._init_weights(flow.wavenet.cond_layer)
self.decoder.resize_speaker_embedding(speaker_embedding_size)
self._init_weights(self.decoder.cond)
self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
self._init_weights(self.duration_predictor.cond)
self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
self._init_weights(self.posterior_encoder.wavenet.cond_layer)
self.config.num_speakers = new_num_speakers
self.config.speaker_embedding_size = speaker_embedding_size
#....................................
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
#....................................
def set_input_embeddings(self, value):
self.text_encoder.set_input_embeddings(value)
#....................................
def apply_weight_norm(self):
self.decoder.apply_weight_norm()
self.flow.apply_weight_norm()
self.posterior_encoder.apply_weight_norm()
#....................................
def remove_weight_norm(self):
self.decoder.remove_weight_norm()
self.flow.remove_weight_norm()
self.posterior_encoder.remove_weight_norm()
#....................................
def discriminate(self, hidden_states):
return self.discriminator(hidden_states)
#....................................
def get_encoder(self):
return self.text_encoder
#....................................
def _inference_forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
):
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
return spectrogram
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.FloatTensor] = None,
labels_attention_mask: Optional[torch.Tensor] = None,
monotonic_alignment_function: Optional[Callable] = None,
) -> Union[Tuple[Any], VitsModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
monotonic_alignment_function = (
self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function
)
if attention_mask is not None:
input_padding_mask = attention_mask.unsqueeze(-1).float()
else:
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
if self.config.num_speakers > 1 and speaker_id is not None:
if isinstance(speaker_id, int):
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
speaker_id = torch.tensor(speaker_id, device=self.device)
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))):
raise ValueError(
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
)
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
else:
speaker_embeddings = None
# if inference, return inference forward of VitsModel
if labels is None:
return self._inference_forward(
input_ids,
attention_mask,
speaker_embeddings,
output_attentions,
output_hidden_states,
return_dict,
input_padding_mask,
)
if labels_attention_mask is not None:
labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
else:
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
labels_padding_mask = labels_attention_mask.unsqueeze(1)
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=input_padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = input_padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
latents, posterior_means, posterior_log_variances = self.posterior_encoder(
labels, labels_padding_mask, speaker_embeddings
)
prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False)
prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2)
with torch.no_grad():
# negative cross-entropy
# [batch_size, d, latent_length]
prior_variances = torch.exp(-2 * prior_log_variances)
# [batch_size, 1, latent_length]
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True)
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances)
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances))
# [batch_size, 1, latent_length]
neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True)
# [batch_size, text_length, latent_length]
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1)
attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
durations = attn.sum(2)
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False
)
log_duration = log_duration / torch.sum(input_padding_mask)
else:
log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask)
# expand priors
prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2)
label_lengths = labels_attention_mask.sum(dim=1)
latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size)
waveform = self.decoder(latents_slice, speaker_embeddings)
if not return_dict:
outputs = (
waveform,
log_duration,
attn,
ids_slice,
input_padding_mask,
labels_padding_mask,
latents,
prior_latents,
prior_means,
prior_log_variances,
posterior_means,
posterior_log_variances,
)
return outputs
return VitsTrainingOutput(
waveform=waveform,
log_duration=log_duration,
attn=attn,
ids_slice=ids_slice,
input_padding_mask=input_padding_mask,
labels_padding_mask=labels_padding_mask,
latents=latents,
prior_latents=prior_latents,
prior_means=prior_means,
prior_log_variances=prior_log_variances,
posterior_means=posterior_means,
posterior_log_variances=posterior_log_variances,
)