Spaces:
Running
Running
import numpy as np | |
import torch | |
from torch import nn | |
import math | |
from typing import Any, Callable, Optional, Tuple, Union | |
from torch.cuda.amp import autocast, GradScaler | |
from .vits_config import VitsConfig,VitsPreTrainedModel | |
from .flow import VitsResidualCouplingBlock | |
from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor | |
from .encoder import VitsTextEncoder | |
from .decoder import VitsHifiGan | |
from .posterior_encoder import VitsPosteriorEncoder | |
from .discriminator import VitsDiscriminator | |
from .vits_output import VitsModelOutput, VitsTrainingOutput | |
from .dataset_features_collector import FeaturesCollectionDataset | |
from .feature_extraction import VitsFeatureExtractor | |
import os | |
import sys | |
from typing import Optional | |
import tempfile | |
from torch.cuda.amp import autocast, GradScaler | |
from IPython.display import clear_output | |
from transformers import set_seed | |
import wandb | |
import logging | |
import copy | |
Lst=['input_ids', | |
'attention_mask', | |
'waveform', | |
'labels', | |
'labels_attention_mask', | |
'mel_scaled_input_features'] | |
def covert_cuda_batch(d): | |
#return d | |
for key in Lst: | |
d[key]=d[key].cuda(non_blocking=True) | |
# for key in d['text_encoder_output']: | |
# d['text_encoder_output'][key]=d['text_encoder_output'][key].cuda(non_blocking=True) | |
for key in d['posterior_encode_output']: | |
d['posterior_encode_output'][key]=d['posterior_encode_output'][key].cuda(non_blocking=True) | |
return d | |
def generator_loss(disc_outputs): | |
total_loss = 0 | |
gen_losses = [] | |
for disc_output in disc_outputs: | |
disc_output = disc_output | |
loss = torch.mean((1 - disc_output) ** 2) | |
gen_losses.append(loss) | |
total_loss += loss | |
return total_loss, gen_losses | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
real_losses = 0 | |
generated_losses = 0 | |
for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs): | |
real_loss = torch.mean((1 - disc_real) ** 2) | |
generated_loss = torch.mean(disc_generated**2) | |
loss += real_loss + generated_loss | |
real_losses += real_loss | |
generated_losses += generated_loss | |
return loss, real_losses, generated_losses | |
def feature_loss(feature_maps_real, feature_maps_generated): | |
loss = 0 | |
for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated): | |
for real, generated in zip(feature_map_real, feature_map_generated): | |
real = real.detach() | |
loss += torch.mean(torch.abs(real - generated)) | |
return loss * 2 | |
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
""" | |
z_p, logs_q: [b, h, t_t] | |
m_p, logs_p: [b, h, t_t] | |
""" | |
z_p = z_p.float() | |
logs_q = logs_q.float() | |
m_p = m_p.float() | |
logs_p = logs_p.float() | |
z_mask = z_mask.float() | |
kl = logs_p - logs_q - 0.5 | |
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p) | |
kl = torch.sum(kl * z_mask) | |
l = kl / torch.sum(z_mask) | |
return l | |
#............................................. | |
# def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask): | |
# kl = prior_log_variance - posterior_log_variance - 0.5 | |
# kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance) | |
# kl = torch.sum(kl * labels_mask) | |
# loss = kl / torch.sum(labels_mask) | |
# return loss | |
def get_state_grad_loss(k1=True, | |
mel=True, | |
duration=True, | |
generator=True, | |
discriminator=True): | |
return {'k1':k1,'mel':mel,'duration':duration,'generator':generator,'discriminator':discriminator} | |
def clip_grad_value_(parameters, clip_value, norm_type=2): | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
norm_type = float(norm_type) | |
if clip_value is not None: | |
clip_value = float(clip_value) | |
total_norm = 0 | |
for p in parameters: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm.item() ** norm_type | |
if clip_value is not None: | |
p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
total_norm = total_norm ** (1. / norm_type) | |
return total_norm | |
class VitsModel(VitsPreTrainedModel): | |
def __init__(self, config: VitsConfig): | |
super().__init__(config) | |
self.config = config | |
self.text_encoder = VitsTextEncoder(config) | |
self.flow = VitsResidualCouplingBlock(config) | |
self.decoder = VitsHifiGan(config) | |
if config.use_stochastic_duration_prediction: | |
self.duration_predictor = VitsStochasticDurationPredictor(config) | |
else: | |
self.duration_predictor = VitsDurationPredictor(config) | |
if config.num_speakers > 1: | |
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size) | |
# This is used only for training. | |
self.posterior_encoder = VitsPosteriorEncoder(config) | |
self.discriminator = VitsDiscriminator(config) | |
# These parameters control the synthesised speech properties | |
self.speaking_rate = config.speaking_rate | |
self.noise_scale = config.noise_scale | |
self.noise_scale_duration = config.noise_scale_duration | |
self.segment_size = self.config.segment_size // self.config.hop_length | |
# Initialize weights and apply final processing | |
self.post_init() | |
self.monotonic_alignment_function=self.monotonic_align_max_path | |
#.................................... | |
def setMfA(self,fn): | |
self.monotonic_alignment_function=fn | |
def monotonic_align_max_path(self,log_likelihoods, mask): | |
# used for training - awfully slow | |
# an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py | |
path = torch.zeros_like(log_likelihoods) | |
text_length_maxs = mask.sum(1)[:, 0] | |
latent_length_maxs = mask.sum(2)[:, 0] | |
indexes = latent_length_maxs - 1 | |
max_neg_val = -1e9 | |
for batch_id in range(len(path)): | |
index = int(indexes[batch_id].item()) | |
text_length_max = int(text_length_maxs[batch_id].item()) | |
latent_length_max = int(latent_length_maxs[batch_id].item()) | |
for y in range(text_length_max): | |
for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)): | |
if x == y: | |
v_cur = max_neg_val | |
else: | |
v_cur = log_likelihoods[batch_id, y - 1, x] | |
if x == 0: | |
if y == 0: | |
v_prev = 0.0 | |
else: | |
v_prev = max_neg_val | |
else: | |
v_prev = log_likelihoods[batch_id, y - 1, x - 1] | |
log_likelihoods[batch_id, y, x] += max(v_prev, v_cur) | |
for y in range(text_length_max - 1, -1, -1): | |
path[batch_id, y, index] = 1 | |
if index != 0 and ( | |
index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1] | |
): | |
index = index - 1 | |
return path | |
#.................................... | |
def slice_segments(self,hidden_states, ids_str, segment_size=4): | |
batch_size, channels, _ = hidden_states.shape | |
# 1d tensor containing the indices to keep | |
indices = torch.arange(segment_size).to(ids_str.device) | |
# extend the indices to match the shape of hidden_states | |
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1) | |
# offset indices with ids_str | |
indices = indices + ids_str.view(-1, 1, 1) | |
# gather indices | |
output = torch.gather(hidden_states, dim=2, index=indices) | |
return output | |
#.................................... | |
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4): | |
batch_size, _, seq_len = hidden_states.size() | |
if sample_lengths is None: | |
sample_lengths = seq_len | |
ids_str_max = sample_lengths - segment_size + 1 | |
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long) | |
ret = self.slice_segments(hidden_states, ids_str, segment_size) | |
return ret, ids_str | |
#.................................... | |
def resize_speaker_embeddings( | |
self, | |
new_num_speakers: int, | |
speaker_embedding_size: Optional[int] = None, | |
pad_to_multiple_of: Optional[int] = 2, | |
): | |
if pad_to_multiple_of is not None: | |
new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of | |
# first, take care of embed_speaker | |
if self.config.num_speakers <= 1: | |
if speaker_embedding_size is None: | |
raise ValueError( | |
"The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method." | |
) | |
# create new embedding layer | |
new_embeddings = nn.Embedding( | |
new_num_speakers, | |
speaker_embedding_size, | |
device=self.device, | |
) | |
# initialize all new embeddings | |
self._init_weights(new_embeddings) | |
else: | |
new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers) | |
self.embed_speaker = new_embeddings | |
# then take care of sub-models | |
self.flow.resize_speaker_embeddings(speaker_embedding_size) | |
for flow in self.flow.flows: | |
self._init_weights(flow.wavenet.cond_layer) | |
self.decoder.resize_speaker_embedding(speaker_embedding_size) | |
self._init_weights(self.decoder.cond) | |
self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size) | |
self._init_weights(self.duration_predictor.cond) | |
self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size) | |
self._init_weights(self.posterior_encoder.wavenet.cond_layer) | |
self.config.num_speakers = new_num_speakers | |
self.config.speaker_embedding_size = speaker_embedding_size | |
#.................................... | |
def get_input_embeddings(self): | |
return self.text_encoder.get_input_embeddings() | |
#.................................... | |
def set_input_embeddings(self, value): | |
self.text_encoder.set_input_embeddings(value) | |
#.................................... | |
def apply_weight_norm(self): | |
self.decoder.apply_weight_norm() | |
self.flow.apply_weight_norm() | |
self.posterior_encoder.apply_weight_norm() | |
#.................................... | |
def remove_weight_norm(self): | |
self.decoder.remove_weight_norm() | |
self.flow.remove_weight_norm() | |
self.posterior_encoder.remove_weight_norm() | |
#.................................... | |
def discriminate(self, hidden_states): | |
return self.discriminator(hidden_states) | |
#.................................... | |
def get_encoder(self): | |
return self.text_encoder | |
#.................................... | |
def _inference_forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
speaker_embeddings: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
): | |
text_encoder_output = self.text_encoder( | |
input_ids=input_ids, | |
padding_mask=padding_mask, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
hidden_states = hidden_states.transpose(1, 2) | |
input_padding_mask = padding_mask.transpose(1, 2) | |
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
if self.config.use_stochastic_duration_prediction: | |
log_duration = self.duration_predictor( | |
hidden_states, | |
input_padding_mask, | |
speaker_embeddings, | |
reverse=True, | |
noise_scale=self.noise_scale_duration, | |
) | |
else: | |
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
length_scale = 1.0 / self.speaking_rate | |
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) | |
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() | |
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length) | |
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) | |
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) | |
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) | |
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) | |
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) | |
batch_size, _, output_length, input_length = attn_mask.shape | |
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) | |
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) | |
valid_indices = indices.unsqueeze(0) < cum_duration | |
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) | |
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] | |
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask | |
# Expand prior distribution | |
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) | |
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) | |
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale | |
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) | |
spectrogram = latents * output_padding_mask | |
waveform = self.decoder(spectrogram, speaker_embeddings) | |
waveform = waveform.squeeze(1) | |
sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates) | |
if not return_dict: | |
outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:] | |
return outputs | |
return VitsModelOutput( | |
waveform=waveform, | |
sequence_lengths=sequence_lengths, | |
spectrogram=spectrogram, | |
hidden_states=text_encoder_output.hidden_states, | |
attentions=text_encoder_output.attentions, | |
) | |
#.................................... | |
def forward_k( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
speaker_id: Optional[int] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.FloatTensor] = None, | |
labels_attention_mask: Optional[torch.Tensor] = None, | |
monotonic_alignment_function: Optional[Callable] = None, | |
) -> Union[Tuple[Any], VitsModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
monotonic_alignment_function = ( | |
self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function | |
) | |
if attention_mask is not None: | |
input_padding_mask = attention_mask.unsqueeze(-1).float() | |
else: | |
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
if self.config.num_speakers > 1 and speaker_id is not None: | |
if isinstance(speaker_id, int): | |
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) | |
elif isinstance(speaker_id, (list, tuple, np.ndarray)): | |
speaker_id = torch.tensor(speaker_id, device=self.device) | |
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item(): | |
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") | |
if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))): | |
raise ValueError( | |
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`." | |
) | |
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) | |
else: | |
speaker_embeddings = None | |
# if inference, return inference forward of VitsModel | |
if labels is None: | |
return self._inference_forward( | |
input_ids, | |
attention_mask, | |
speaker_embeddings, | |
output_attentions, | |
output_hidden_states, | |
return_dict, | |
input_padding_mask, | |
) | |
if labels_attention_mask is not None: | |
labels_padding_mask = labels_attention_mask.unsqueeze(1).float() | |
else: | |
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device) | |
labels_padding_mask = labels_attention_mask.unsqueeze(1) | |
text_encoder_output = self.text_encoder( | |
input_ids=input_ids, | |
padding_mask=input_padding_mask, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
hidden_states = hidden_states.transpose(1, 2) | |
input_padding_mask = input_padding_mask.transpose(1, 2) | |
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
latents, posterior_means, posterior_log_variances = self.posterior_encoder( | |
labels, labels_padding_mask, speaker_embeddings | |
) | |
prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False) | |
prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2) | |
with torch.no_grad(): | |
# negative cross-entropy | |
# [batch_size, d, latent_length] | |
prior_variances = torch.exp(-2 * prior_log_variances) | |
# [batch_size, 1, latent_length] | |
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True) | |
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances) | |
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances)) | |
# [batch_size, 1, latent_length] | |
neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True) | |
# [batch_size, text_length, latent_length] | |
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 | |
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1) | |
attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() | |
durations = attn.sum(2) | |
if self.config.use_stochastic_duration_prediction: | |
log_duration = self.duration_predictor( | |
hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False | |
) | |
log_duration = log_duration / torch.sum(input_padding_mask) | |
else: | |
log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask | |
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask) | |
# expand priors | |
prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2) | |
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2) | |
label_lengths = labels_attention_mask.sum(dim=1) | |
latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size) | |
waveform = self.decoder(latents_slice, speaker_embeddings) | |
if not return_dict: | |
outputs = ( | |
waveform, | |
log_duration, | |
attn, | |
ids_slice, | |
input_padding_mask, | |
labels_padding_mask, | |
latents, | |
prior_latents, | |
prior_means, | |
prior_log_variances, | |
posterior_means, | |
posterior_log_variances, | |
) | |
return outputs | |
return VitsTrainingOutput( | |
waveform=waveform, | |
log_duration=log_duration, | |
attn=attn, | |
ids_slice=ids_slice, | |
input_padding_mask=input_padding_mask, | |
labels_padding_mask=labels_padding_mask, | |
latents=latents, | |
prior_latents=prior_latents, | |
prior_means=prior_means, | |
prior_log_variances=prior_log_variances, | |
posterior_means=posterior_means, | |
posterior_log_variances=posterior_log_variances, | |
) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
speaker_id: Optional[int] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.FloatTensor] = None, | |
labels_attention_mask: Optional[torch.Tensor] = None, | |
text_encoder_output=None, | |
posterior_encode_output=None, | |
monotonic_alignment_function: Optional[Callable] = None, | |
speaker_embeddings=None | |
) -> Union[Tuple[Any], VitsModelOutput]: | |
#output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states# if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# if attention_mask is not None: | |
input_padding_mask = attention_mask.unsqueeze(-1).float() | |
#else: | |
# input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
# speaker_embeddings=None | |
# if labels_attention_mask is not None: | |
labels_padding_mask = labels_attention_mask.unsqueeze(1).float() | |
# else: | |
# labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device) | |
# labels_padding_mask = labels_attention_mask.unsqueeze(1) | |
if text_encoder_output is None: | |
text_encoder_output = self.text_encoder( | |
input_ids=input_ids, | |
padding_mask=input_padding_mask, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
#hidden_states = text_encoder_output[0] #if not return_dict else text_encoder_output.last_hidden_state | |
hidden_states = text_encoder_output[0].transpose(1, 2) | |
input_padding_mask = input_padding_mask.transpose(1, 2) | |
prior_means = text_encoder_output[1].transpose(1, 2) #if not return_dict else text_encoder_output.prior_means | |
prior_log_variances = text_encoder_output[2].transpose(1, 2) #if not return_dict else text_encoder_output.prior_log_variances | |
# if posterior_encode_output is None: | |
# latents, posterior_means, posterior_log_variances = self.posterior_encoder( | |
# labels, labels_padding_mask, speaker_embeddings | |
# ) | |
# else: | |
latents=posterior_encode_output['posterior_latents'] | |
posterior_means=posterior_encode_output['posterior_means'] | |
posterior_log_variances=posterior_encode_output['posterior_log_variances'] | |
prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False) | |
# prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2) | |
with torch.no_grad(): | |
# negative cross-entropy | |
# [batch_size, d, latent_length] | |
prior_variances = torch.exp(-2 * prior_log_variances) | |
# [batch_size, 1, latent_length] | |
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True) | |
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances) | |
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances)) | |
# [batch_size, 1, latent_length] | |
neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True) | |
# [batch_size, text_length, latent_length] | |
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 | |
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1) | |
attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() | |
durations = attn.sum(2) | |
#if self.config.use_stochastic_duration_prediction: | |
log_duration = self.duration_predictor( | |
hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False | |
) | |
log_duration = log_duration / torch.sum(input_padding_mask) | |
# else: | |
# log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask | |
# log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
# log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask) | |
# expand priors | |
prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2) | |
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2) | |
label_lengths = labels_attention_mask.sum(dim=1) | |
latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size) | |
waveform = self.decoder(latents_slice, speaker_embeddings) | |
return waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask | |