ONNXServies / VitsModelSplit /feature_extraction.py
wasmdashai's picture
model push
38f004a
raw
history blame
12.1 kB
"""
Feature extractor class for Vits
"""
import copy
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from transformers import is_torch_available
from transformers.audio_utils import mel_filter_bank
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.utils import TensorType, logging
MAX_WAV_VALUE = 32768.0
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class VitsFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a Vits feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts `Short Time Fourier Transform` from raw speech using a custom numpy implementation which should
match pytorch's `torch.stft`.
Args:
feature_size (`int`, defaults to 80):
The feature dimension of the extracted features.
sampling_rate (`int`, defaults to 22050):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
hop_length (`int`, defaults to 256):
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
n_fft (`int`, defaults to 1024):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
return_attention_mask (`bool`, *optional*, defaults to `False`):
Whether to return the attention mask.
[What are attention masks?](../glossary#attention-mask)
<Tip>
For Vits finetuning, `attention_mask` should always be passed for batched inference, to avoid subtle bugs.
</Tip>
max_wav_value (`float`, defaults to 32768.0):
Maximum wav value. Used to normalize the input waveforms if `do_normalize=True` in the forward pass of this
feature extractor.
"""
model_input_names = ["input_features"]
def __init__(
self,
feature_size=80,
sampling_rate=16000,
hop_length=256,
n_fft=1024,
padding_value=0.0,
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask,
max_wav_value=32768.0,
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
return_attention_mask=return_attention_mask,
**kwargs,
)
self.n_fft = n_fft
self.hop_length = hop_length
self.sampling_rate = sampling_rate
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2,
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=sampling_rate // 2,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="slaney",
)
self.max_wav_value = max_wav_value
def _torch_extract_fbank_features(self, waveform: np.array) -> Tuple[torch.Tensor]:
"""
Compute the log-mel spectrogram of the provided audio using the PyTorch STFT implementation.
"""
if len(waveform.shape) == 1:
waveform = waveform.unsqueeze(0)
waveform = torch.nn.functional.pad(
waveform,
(int((self.n_fft - self.hop_length) / 2), int((self.n_fft - self.hop_length) / 2)),
mode="reflect",
)
window = torch.hann_window(self.n_fft).to(waveform.device)
stft = torch.stft(
waveform,
self.n_fft,
hop_length=self.hop_length,
win_length=self.n_fft,
window=window,
center=False,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
magnitudes = torch.sqrt(stft.pow(2).sum(-1) + 1e-6)
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32).to(waveform.device)
mel_spec = mel_filters.T @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-5).log()
return magnitudes, log_spec
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
truncation: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = True,
padding: Optional[str] = True,
max_length: Optional[int] = None,
sampling_rate: Optional[int] = None,
do_normalize: Optional[bool] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
truncation (`bool`, *optional*, default to `False`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*, defaults to None):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*, defaults to `True`):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
<Tip>
For Vits finetuning, `attention_mask` should always be passed for batched inference, to avoid subtle
bugs.
</Tip>
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline.
do_normalize (`bool`, *optional*):
Whether or not to divide the input waveform by `self.max_wav_value`.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
if self.max_wav_value is not None and do_normalize:
raw_speech = [
speech if self.max_wav_value is None else speech / self.max_wav_value for speech in raw_speech
]
batched_speech = BatchFeature({"input_features": raw_speech})
# convert into correct format for padding
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask or do_normalize,
return_tensors="pt",
)
# make sure list is in array format
if isinstance(padded_inputs.get("input_features"),list):
input_features = torch.tensor(padded_inputs.get("input_features")).transpose(1, 2).transpose(0, 1)
else:
input_features = padded_inputs.get("input_features").clone().detach().transpose(1, 2).transpose(0, 1)
input_features = self._torch_extract_fbank_features(input_features[0])
mel_scaled_input_features = input_features[1]
input_features = input_features[0]
padded_inputs["input_features"] = input_features
padded_inputs["mel_scaled_input_features"] = mel_scaled_input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length]
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
output["feature_extractor_type"] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output