File size: 12,090 Bytes
38f004a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
Feature extractor class for Vits
"""
import copy
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np

from transformers import is_torch_available
from transformers.audio_utils import mel_filter_bank
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.utils import TensorType, logging


MAX_WAV_VALUE = 32768.0

if is_torch_available():
    import torch

logger = logging.get_logger(__name__)


class VitsFeatureExtractor(SequenceFeatureExtractor):
    r"""
    Constructs a Vits feature extractor.

    This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
    most of the main methods. Users should refer to this superclass for more information regarding those methods.

    This class extracts `Short Time Fourier Transform` from raw speech using a custom numpy implementation which should
    match pytorch's `torch.stft`.

    Args:
        feature_size (`int`, defaults to 80):
            The feature dimension of the extracted features.
        sampling_rate (`int`, defaults to 22050):
            The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
        hop_length (`int`, defaults to 256):
            Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
        n_fft (`int`, defaults to 1024):
            Size of the Fourier transform.
        padding_value (`float`, *optional*, defaults to 0.0):
            Padding value used to pad the audio. Should correspond to silences.
        return_attention_mask (`bool`, *optional*, defaults to `False`):
            Whether to return the attention mask.

            [What are attention masks?](../glossary#attention-mask)

            <Tip>

            For Vits finetuning, `attention_mask` should always be passed for batched inference, to avoid subtle bugs.

            </Tip>

        max_wav_value (`float`, defaults to 32768.0):
            Maximum wav value. Used to normalize the input waveforms if `do_normalize=True` in the forward pass of this
            feature extractor.
    """

    model_input_names = ["input_features"]

    def __init__(
        self,
        feature_size=80,
        sampling_rate=16000,
        hop_length=256,
        n_fft=1024,
        padding_value=0.0,
        return_attention_mask=False,  # pad inputs to max length with silence token (zero) and no attention mask,
        max_wav_value=32768.0,
        **kwargs,
    ):
        super().__init__(
            feature_size=feature_size,
            sampling_rate=sampling_rate,
            padding_value=padding_value,
            return_attention_mask=return_attention_mask,
            **kwargs,
        )
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.sampling_rate = sampling_rate
        self.mel_filters = mel_filter_bank(
            num_frequency_bins=1 + n_fft // 2,
            num_mel_filters=feature_size,
            min_frequency=0.0,
            max_frequency=sampling_rate // 2,
            sampling_rate=sampling_rate,
            norm="slaney",
            mel_scale="slaney",
        )
        self.max_wav_value = max_wav_value

    def _torch_extract_fbank_features(self, waveform: np.array) -> Tuple[torch.Tensor]:
        """
        Compute the log-mel spectrogram of the provided audio using the PyTorch STFT implementation.
        """
        if len(waveform.shape) == 1:
            waveform = waveform.unsqueeze(0)

        waveform = torch.nn.functional.pad(
            waveform,
            (int((self.n_fft - self.hop_length) / 2), int((self.n_fft - self.hop_length) / 2)),
            mode="reflect",
        )

        window = torch.hann_window(self.n_fft).to(waveform.device)
        stft = torch.stft(
            waveform,
            self.n_fft,
            hop_length=self.hop_length,
            win_length=self.n_fft,
            window=window,
            center=False,
            pad_mode="reflect",
            normalized=False,
            onesided=True,
            return_complex=False,
        )
        magnitudes = torch.sqrt(stft.pow(2).sum(-1) + 1e-6)

        mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32).to(waveform.device)
        mel_spec = mel_filters.T @ magnitudes

        log_spec = torch.clamp(mel_spec, min=1e-5).log()
        return magnitudes, log_spec

    def __call__(
        self,
        raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
        truncation: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_attention_mask: Optional[bool] = True,
        padding: Optional[str] = True,
        max_length: Optional[int] = None,
        sampling_rate: Optional[int] = None,
        do_normalize: Optional[bool] = None,
        **kwargs,
    ) -> BatchFeature:
        """
        Main method to featurize and prepare for the model one or several sequence(s).

        Args:
            raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
                The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
                values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
                stereo, i.e. single float per timestep.
            truncation (`bool`, *optional*, default to `False`):
                Activates truncation to cut input sequences longer than *max_length* to *max_length*.
            pad_to_multiple_of (`int`, *optional*, defaults to None):
                If set will pad the sequence to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            return_attention_mask (`bool`, *optional*, defaults to `True`):
                Whether to return the attention mask. If left to the default, will return the attention mask according
                to the specific feature_extractor's default.

                [What are attention masks?](../glossary#attention-mask)

                <Tip>

                For Vits finetuning, `attention_mask` should always be passed for batched inference, to avoid subtle
                bugs.

                </Tip>

            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            sampling_rate (`int`, *optional*):
                The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
                `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
                pipeline.
            do_normalize (`bool`, *optional*):
                Whether or not to divide the input waveform by `self.max_wav_value`.
        """

        if sampling_rate is not None:
            if sampling_rate != self.sampling_rate:
                raise ValueError(
                    f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
                    f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
                    f" was sampled with {self.sampling_rate} and not {sampling_rate}."
                )
        else:
            logger.warning(
                "It is strongly recommended to pass the `sampling_rate` argument to this function. "
                "Failing to do so can result in silent errors that might be hard to debug."
            )

        is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
        if is_batched_numpy and len(raw_speech.shape) > 2:
            raise ValueError(f"Only mono-channel audio is supported for input to {self}")
        is_batched = is_batched_numpy or (
            isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
        )

        if is_batched:
            raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
        elif not is_batched and not isinstance(raw_speech, np.ndarray):
            raw_speech = np.asarray(raw_speech, dtype=np.float32)
        elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
            raw_speech = raw_speech.astype(np.float32)

        # always return batch
        if not is_batched:
            raw_speech = [np.asarray([raw_speech]).T]

        if self.max_wav_value is not None and do_normalize:
            raw_speech = [
                speech if self.max_wav_value is None else speech / self.max_wav_value for speech in raw_speech
            ]

        batched_speech = BatchFeature({"input_features": raw_speech})

        # convert into correct format for padding
        padded_inputs = self.pad(
            batched_speech,
            padding=padding,
            max_length=max_length,
            truncation=truncation,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask or do_normalize,
            return_tensors="pt",
        )

        # make sure list is in array format
        if isinstance(padded_inputs.get("input_features"),list):
            input_features = torch.tensor(padded_inputs.get("input_features")).transpose(1, 2).transpose(0, 1)
        else:
            input_features = padded_inputs.get("input_features").clone().detach().transpose(1, 2).transpose(0, 1)


        input_features = self._torch_extract_fbank_features(input_features[0])

        mel_scaled_input_features = input_features[1]
        input_features = input_features[0]

        padded_inputs["input_features"] = input_features
        padded_inputs["mel_scaled_input_features"] = mel_scaled_input_features

        if return_attention_mask:
            # rescale from sample (48000) to feature (3000)
            padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length]

        if return_tensors is not None:
            padded_inputs = padded_inputs.convert_to_tensors(return_tensors)

        return padded_inputs

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        output = copy.deepcopy(self.__dict__)
        output["feature_extractor_type"] = self.__class__.__name__
        if "mel_filters" in output:
            del output["mel_filters"]
        return output