File size: 5,987 Bytes
38f004a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from torch import nn
import torch

from .vits_config import VitsPreTrainedModel


#.............................................


class VitsHifiGanDiscriminatorScaleResidualBlock(nn.Module):
    def __init__(self, discriminator_scale_channels, leaky_relu_slope=0.1):
        super().__init__()
        self.leaky_relu_slope = leaky_relu_slope

        in_channels, out_channels = discriminator_scale_channels[:2]
        self.convs = nn.ModuleList([nn.Conv1d(in_channels, out_channels, 15, 1, padding=7)])

        groups = 4
        for in_channels, out_channels in zip(discriminator_scale_channels[1:-1], discriminator_scale_channels[2:]):
            self.convs.append(nn.Conv1d(in_channels, out_channels, 41, 4, groups=groups, padding=20))
            groups = groups * 4

        channel_size = discriminator_scale_channels[-1]
        self.convs.append(nn.Conv1d(channel_size, channel_size, 41, 4, groups=groups, padding=20))
        self.convs.append(nn.Conv1d(channel_size, channel_size, 5, 1, padding=2))
        self.final_conv = nn.Conv1d(channel_size, 1, 3, 1, padding=1)

    def apply_weight_norm(self):
        for layer in self.convs:
            nn.utils.weight_norm(layer)
        nn.utils.weight_norm(self.final_conv)

    def remove_weight_norm(self):
        for layer in self.convs:
            nn.utils.remove_weight_norm(layer)
        nn.utils.remove_weight_norm(self.final_conv)

    def forward(self, hidden_states):
        fmap = []

        for conv in self.convs:
            hidden_states = conv(hidden_states)
            hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
            fmap.append(hidden_states)

        hidden_states = self.final_conv(hidden_states)
        fmap.append(hidden_states)
        hidden_states = torch.flatten(hidden_states, 1, -1)

        return hidden_states, fmap


#.............................................................................................

class VitsHifiGanDiscriminatorPeriodResidualBlock(nn.Module):
    def __init__(self, discriminator_period_channels, period, kernel_size=5, stride=3, leaky_relu_slope=0.1):
        super().__init__()
        self.leaky_relu_slope = leaky_relu_slope
        self.period = period

        self.convs = nn.ModuleList()
        for in_channels, out_channels in zip(discriminator_period_channels[:-1], discriminator_period_channels[1:]):
            self.convs.append(
                nn.Conv2d(
                    in_channels,
                    out_channels,
                    (kernel_size, 1),
                    (stride, 1),
                    padding=(self.get_padding(kernel_size, 1), 0),
                )
            )

        channel_size = discriminator_period_channels[-1]
        self.convs.append(
            nn.Conv2d(channel_size, channel_size, (kernel_size, 1), 1, padding=(self.get_padding(kernel_size, 1), 0))
        )
        self.final_conv = nn.Conv2d(channel_size, 1, (3, 1), 1, padding=(1, 0))

    def get_padding(self, kernel_size, dilation=1):
        return (kernel_size * dilation - dilation) // 2

    def apply_weight_norm(self):
        for layer in self.convs:
            nn.utils.weight_norm(layer)
        nn.utils.weight_norm(self.final_conv)

    def remove_weight_norm(self):
        for layer in self.convs:
            nn.utils.remove_weight_norm(layer)
        nn.utils.remove_weight_norm(self.final_conv)

    def forward(self, hidden_states):
        fmap = []

        # from 1D to 2D
        batch_size, channels, length = hidden_states.shape
        if length % self.period != 0:
            # pad first
            n_pad = self.period - (length % self.period)
            hidden_states = nn.functional.pad(hidden_states, (0, n_pad), "reflect")
            length = length + n_pad
        hidden_states = hidden_states.view(batch_size, channels, length // self.period, self.period)

        for conv in self.convs:
            hidden_states = conv(hidden_states)
            hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
            fmap.append(hidden_states)

        hidden_states = self.final_conv(hidden_states)
        fmap.append(hidden_states)
        hidden_states = torch.flatten(hidden_states, 1, -1)

        return hidden_states, fmap


#.............................................................................................

class VitsDiscriminator(VitsPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        if config.discriminator_scale_channels is not None:
            self.discriminators = nn.ModuleList(
                [VitsHifiGanDiscriminatorScaleResidualBlock(config.discriminator_scale_channels, config.leaky_relu_slope)]
            )
        else:
            self.discriminators = nn.ModuleList([])
        
        self.discriminators.extend(
            [
                VitsHifiGanDiscriminatorPeriodResidualBlock(
                    config.discriminator_period_channels,
                    period,
                    config.discriminator_kernel_size,
                    config.discriminator_stride,
                    config.leaky_relu_slope,
                )
                for period in config.discriminator_periods
            ]
        )

    def forward(self, hidden_states):
        fmaps = []
        discriminated_hidden_states_list = []

        for discriminator in self.discriminators:
            discriminated_hidden_states, fmap = discriminator(hidden_states)
            fmaps.append(fmap)
            discriminated_hidden_states_list.append(discriminated_hidden_states)

        return discriminated_hidden_states_list, fmaps

    def apply_weight_norm(self):
        for disc in self.discriminators:
            disc.apply_weight_norm()

    def remove_weight_norm(self):
        for disc in self.discriminators:
            disc.remove_weight_norm()


#.............................................................................................