Spaces:
Sleeping
Sleeping
File size: 11,368 Bytes
38f004a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import numpy as np
import torch
from torch import nn
import math
from typing import Any, Callable, Optional, Tuple, Union
from torch.cuda.amp import autocast, GradScaler
from .vits_config import VitsConfig,VitsPreTrainedModel
from .flow import VitsResidualCouplingBlock
from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
from .encoder import VitsTextEncoder
from .decoder import VitsHifiGan
from .posterior_encoder import VitsPosteriorEncoder
from .discriminator import VitsDiscriminator
from .vits_output import VitsModelOutput, VitsTrainingOutput
class Vits_models_only_decoder(VitsPreTrainedModel):
def __init__(self, config: VitsConfig):
super().__init__(config)
self.config = config
self.text_encoder = VitsTextEncoder(config)
self.flow = VitsResidualCouplingBlock(config)
self.decoder = VitsHifiGan(config)
if config.use_stochastic_duration_prediction:
self.duration_predictor = VitsStochasticDurationPredictor(config)
else:
self.duration_predictor = VitsDurationPredictor(config)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
# This is used only for training.
self.posterior_encoder = VitsPosteriorEncoder(config)
self.discriminator = VitsDiscriminator(config)
# These parameters control the synthesised speech properties
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
self.segment_size = self.config.segment_size // self.config.hop_length
# Initialize weights and apply final processing
self.post_init()
#....................................
def monotonic_align_max_path(self,log_likelihoods, mask):
# used for training - awfully slow
# an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
path = torch.zeros_like(log_likelihoods)
text_length_maxs = mask.sum(1)[:, 0]
latent_length_maxs = mask.sum(2)[:, 0]
indexes = latent_length_maxs - 1
max_neg_val = -1e9
for batch_id in range(len(path)):
index = int(indexes[batch_id].item())
text_length_max = int(text_length_maxs[batch_id].item())
latent_length_max = int(latent_length_maxs[batch_id].item())
for y in range(text_length_max):
for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
if x == y:
v_cur = max_neg_val
else:
v_cur = log_likelihoods[batch_id, y - 1, x]
if x == 0:
if y == 0:
v_prev = 0.0
else:
v_prev = max_neg_val
else:
v_prev = log_likelihoods[batch_id, y - 1, x - 1]
log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
for y in range(text_length_max - 1, -1, -1):
path[batch_id, y, index] = 1
if index != 0 and (
index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
):
index = index - 1
return path
#....................................
def slice_segments(self,hidden_states, ids_str, segment_size=4):
batch_size, channels, _ = hidden_states.shape
# 1d tensor containing the indices to keep
indices = torch.arange(segment_size).to(ids_str.device)
# extend the indices to match the shape of hidden_states
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
# offset indices with ids_str
indices = indices + ids_str.view(-1, 1, 1)
# gather indices
output = torch.gather(hidden_states, dim=2, index=indices)
return output
#....................................
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
batch_size, _, seq_len = hidden_states.size()
if sample_lengths is None:
sample_lengths = seq_len
ids_str_max = sample_lengths - segment_size + 1
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
ret = self.slice_segments(hidden_states, ids_str, segment_size)
return ret, ids_str
#....................................
def resize_speaker_embeddings(
self,
new_num_speakers: int,
speaker_embedding_size: Optional[int] = None,
pad_to_multiple_of: Optional[int] = 2,
):
if pad_to_multiple_of is not None:
new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
# first, take care of embed_speaker
if self.config.num_speakers <= 1:
if speaker_embedding_size is None:
raise ValueError(
"The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
)
# create new embedding layer
new_embeddings = nn.Embedding(
new_num_speakers,
speaker_embedding_size,
device=self.device,
)
# initialize all new embeddings
self._init_weights(new_embeddings)
else:
new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
self.embed_speaker = new_embeddings
# then take care of sub-models
self.flow.resize_speaker_embeddings(speaker_embedding_size)
for flow in self.flow.flows:
self._init_weights(flow.wavenet.cond_layer)
self.decoder.resize_speaker_embedding(speaker_embedding_size)
self._init_weights(self.decoder.cond)
self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
self._init_weights(self.duration_predictor.cond)
self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
self._init_weights(self.posterior_encoder.wavenet.cond_layer)
self.config.num_speakers = new_num_speakers
self.config.speaker_embedding_size = speaker_embedding_size
#....................................
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
#....................................
def set_input_embeddings(self, value):
self.text_encoder.set_input_embeddings(value)
#....................................
def apply_weight_norm(self):
self.decoder.apply_weight_norm()
self.flow.apply_weight_norm()
self.posterior_encoder.apply_weight_norm()
#....................................
def remove_weight_norm(self):
self.decoder.remove_weight_norm()
self.flow.remove_weight_norm()
self.posterior_encoder.remove_weight_norm()
#....................................
def discriminate(self, hidden_states):
return self.discriminator(hidden_states)
#....................................
def get_encoder(self):
return self.text_encoder
#....................................
def _inference_forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
):
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
return spectrogram
|