|
|
|
|
|
from collections import Counter, defaultdict |
|
from typing import Dict |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import plotly.graph_objects as go |
|
|
|
from .parser import ( |
|
filter_area, |
|
filter_node, |
|
filter_way, |
|
match_to_group, |
|
parse_area, |
|
parse_node, |
|
parse_way, |
|
Patterns, |
|
) |
|
from .reader import OSMData |
|
|
|
|
|
def recover_hierarchy(counter: Counter) -> Dict: |
|
"""Recover a two-level hierarchy from the flat group labels.""" |
|
groups = defaultdict(dict) |
|
for k, v in sorted(counter.items(), key=lambda x: -x[1]): |
|
if ":" in k: |
|
prefix, group = k.split(":") |
|
if prefix in groups and isinstance(groups[prefix], int): |
|
groups[prefix] = {} |
|
groups[prefix][prefix] = groups[prefix] |
|
groups[prefix] = {} |
|
groups[prefix][group] = v |
|
else: |
|
groups[k] = v |
|
return dict(groups) |
|
|
|
|
|
def bar_autolabel(rects, fontsize): |
|
"""Attach a text label above each bar in *rects*, displaying its height.""" |
|
for rect in rects: |
|
width = rect.get_width() |
|
plt.gca().annotate( |
|
f"{width}", |
|
xy=(width, rect.get_y() + rect.get_height() / 2), |
|
xytext=(3, 0), |
|
textcoords="offset points", |
|
ha="left", |
|
va="center", |
|
fontsize=fontsize, |
|
) |
|
|
|
|
|
def plot_histogram(counts, fontsize, dpi): |
|
fig, ax = plt.subplots(dpi=dpi, figsize=(8, 20)) |
|
|
|
labels = [] |
|
for k, v in counts.items(): |
|
if isinstance(v, dict): |
|
labels += list(v.keys()) |
|
v = list(v.values()) |
|
else: |
|
labels.append(k) |
|
v = [v] |
|
bars = plt.barh( |
|
len(labels) + -len(v) + np.arange(len(v)), v, height=0.9, label=k |
|
) |
|
bar_autolabel(bars, fontsize) |
|
|
|
ax.set_yticklabels(labels, fontsize=fontsize) |
|
ax.axes.xaxis.set_ticklabels([]) |
|
ax.xaxis.tick_top() |
|
ax.invert_yaxis() |
|
plt.yticks(np.arange(len(labels))) |
|
plt.xscale("log") |
|
plt.legend(ncol=len(counts), loc="upper center") |
|
|
|
|
|
def count_elements(elems: Dict[int, str], filter_fn, parse_fn) -> Dict: |
|
"""Count the number of elements in each group.""" |
|
counts = Counter() |
|
for elem in filter(filter_fn, elems.values()): |
|
group = parse_fn(elem.tags) |
|
if group is None: |
|
continue |
|
counts[group] += 1 |
|
counts = recover_hierarchy(counts) |
|
return counts |
|
|
|
|
|
def plot_osm_histograms(osm: OSMData, fontsize=8, dpi=150): |
|
counts = count_elements(osm.nodes, filter_node, parse_node) |
|
plot_histogram(counts, fontsize, dpi) |
|
plt.title("nodes") |
|
|
|
counts = count_elements(osm.ways, filter_way, parse_way) |
|
plot_histogram(counts, fontsize, dpi) |
|
plt.title("ways") |
|
|
|
counts = count_elements(osm.ways, filter_area, parse_area) |
|
plot_histogram(counts, fontsize, dpi) |
|
plt.title("areas") |
|
|
|
|
|
def plot_sankey_hierarchy(osm: OSMData): |
|
triplets = [] |
|
for node in filter(filter_node, osm.nodes.values()): |
|
label = parse_node(node.tags) |
|
if label is None: |
|
continue |
|
group = match_to_group(label, Patterns.nodes) |
|
if group is None: |
|
group = match_to_group(label, Patterns.ways) |
|
if group is None: |
|
group = "null" |
|
if ":" in label: |
|
key, tag = label.split(":") |
|
if tag == "yes": |
|
tag = key |
|
else: |
|
key = tag = label |
|
triplets.append((key, tag, group)) |
|
keys, tags, groups = list(zip(*triplets)) |
|
counts_key_tag = Counter(zip(keys, tags)) |
|
counts_key_tag_group = Counter(triplets) |
|
|
|
key2tags = defaultdict(set) |
|
for k, t in zip(keys, tags): |
|
key2tags[k].add(t) |
|
key2tags = {k: sorted(t) for k, t in key2tags.items()} |
|
keytag2group = dict(zip(zip(keys, tags), groups)) |
|
key_names = sorted(set(keys)) |
|
tag_names = [(k, t) for k in key_names for t in key2tags[k]] |
|
|
|
group_names = [] |
|
for k in key_names: |
|
for t in key2tags[k]: |
|
g = keytag2group[k, t] |
|
if g not in group_names and g != "null": |
|
group_names.append(g) |
|
group_names += ["null"] |
|
|
|
key2idx = dict(zip(key_names, range(len(key_names)))) |
|
tag2idx = {kt: i + len(key2idx) for i, kt in enumerate(tag_names)} |
|
group2idx = {n: i + len(key2idx) + len(tag2idx) for i, n in enumerate(group_names)} |
|
|
|
key_counts = Counter(keys) |
|
key_text = [f"{k} {key_counts[k]}" for k in key_names] |
|
tag_counts = Counter(list(zip(keys, tags))) |
|
tag_text = [f"{t} {tag_counts[k, t]}" for k, t in tag_names] |
|
group_counts = Counter(groups) |
|
group_text = [f"{k} {group_counts[k]}" for k in group_names] |
|
|
|
fig = go.Figure( |
|
data=[ |
|
go.Sankey( |
|
orientation="h", |
|
node=dict( |
|
pad=15, |
|
thickness=20, |
|
line=dict(color="black", width=0.5), |
|
label=key_text + tag_text + group_text, |
|
x=[0] * len(key_names) |
|
+ [1] * len(tag_names) |
|
+ [2] * len(group_names), |
|
color="blue", |
|
), |
|
arrangement="fixed", |
|
link=dict( |
|
source=[key2idx[k] for k, _ in counts_key_tag] |
|
+ [tag2idx[k, t] for k, t, _ in counts_key_tag_group], |
|
target=[tag2idx[k, t] for k, t in counts_key_tag] |
|
+ [group2idx[g] for _, _, g in counts_key_tag_group], |
|
value=list(counts_key_tag.values()) |
|
+ list(counts_key_tag_group.values()), |
|
), |
|
) |
|
] |
|
) |
|
fig.update_layout(autosize=False, width=800, height=2000, font_size=10) |
|
fig.show() |
|
return fig |
|
|