RishabhBhardwaj commited on
Commit
4760da5
1 Parent(s): 3db33cc

prevent reloading logo and info

Browse files
Files changed (1) hide show
  1. app.py +6 -9
app.py CHANGED
@@ -1,6 +1,4 @@
1
  import streamlit as st
2
- import torch
3
- import torch.nn as nn
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
  import requests
6
  from PIL import Image
@@ -16,17 +14,15 @@ Answer: [/INST]
16
  """
17
 
18
  # Load the model and tokenizer
19
- @st.cache_resource
20
  def load_model():
21
  model_name = "walledai/walledguard-c"
22
  tokenizer = AutoTokenizer.from_pretrained(model_name)
23
  model = AutoModelForCausalLM.from_pretrained(model_name)
24
  return tokenizer, model
25
 
26
- tokenizer, model = load_model()
27
-
28
  # Function to load image from URL
29
- @st.cache_data
30
  def load_image_from_url(url):
31
  response = requests.get(url)
32
  img = Image.open(BytesIO(response.content))
@@ -40,6 +36,9 @@ user_input = st.text_area("Enter the text you want to evaluate:", height=100)
40
 
41
  if st.button("Evaluate"):
42
  if user_input:
 
 
 
43
  # Prepare input
44
  input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt")
45
 
@@ -61,7 +60,6 @@ if st.button("Evaluate"):
61
  st.warning("Please enter some text to evaluate.")
62
 
63
  # Add logo at the bottom center
64
- #st.markdown("---")
65
  col1, col2, col3 = st.columns([1,2,1])
66
  with col2:
67
  logo_url = "https://github.com/walledai/walledeval/assets/32847115/d8b1d14f-7071-448b-8997-2eeba4c2c8f6"
@@ -69,7 +67,6 @@ with col2:
69
  st.image(logo, use_column_width=True, width=500) # Adjust the width as needed
70
 
71
  # Add information about Walled Guard Advanced
72
- #st.markdown("---")
73
  col1, col2, col3 = st.columns([1,2,1])
74
  with col2:
75
- st.info("For a more performant version, check out Walled Guard Advanced. Connect with us at [email protected] for more information.")
 
1
  import streamlit as st
 
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import requests
4
  from PIL import Image
 
14
  """
15
 
16
  # Load the model and tokenizer
17
+ @st.cache(allow_output_mutation=True)
18
  def load_model():
19
  model_name = "walledai/walledguard-c"
20
  tokenizer = AutoTokenizer.from_pretrained(model_name)
21
  model = AutoModelForCausalLM.from_pretrained(model_name)
22
  return tokenizer, model
23
 
 
 
24
  # Function to load image from URL
25
+ @st.cache(hash_funcs={Image.Image: lambda img: None})
26
  def load_image_from_url(url):
27
  response = requests.get(url)
28
  img = Image.open(BytesIO(response.content))
 
36
 
37
  if st.button("Evaluate"):
38
  if user_input:
39
+ # Load model and tokenizer
40
+ tokenizer, model = load_model()
41
+
42
  # Prepare input
43
  input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt")
44
 
 
60
  st.warning("Please enter some text to evaluate.")
61
 
62
  # Add logo at the bottom center
 
63
  col1, col2, col3 = st.columns([1,2,1])
64
  with col2:
65
  logo_url = "https://github.com/walledai/walledeval/assets/32847115/d8b1d14f-7071-448b-8997-2eeba4c2c8f6"
 
67
  st.image(logo, use_column_width=True, width=500) # Adjust the width as needed
68
 
69
  # Add information about Walled Guard Advanced
 
70
  col1, col2, col3 = st.columns([1,2,1])
71
  with col2:
72
+ st.info("For a more performant version, check out Walled Guard Advanced. Connect with us at [email protected] for more information.")