RishabhBhardwaj's picture
Walledguard bring back
cd0c6eb
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import requests
from PIL import Image
from io import BytesIO
# Define the template
TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information.
<START TEXT>
{prompt}
<END TEXT>
Answer: [/INST]
"""
# Load the model and tokenizer
@st.cache_resource
def load_model():
model_name = "walledai/walledguard-c"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
# Function to load image from URL
@st.cache_data()
def load_image_from_url(url):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
return img
# Evaluation function
def evaluate_text(user_input):
if user_input:
# Get model and tokenizer from session state
tokenizer, model = st.session_state.model_and_tokenizer
# Prepare input
input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt")
# Generate output
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0)
# Decode output
prompt_len = input_ids.shape[-1]
output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
# Determine prediction
prediction = 'unsafe' if 'unsafe' in output_decoded.lower() else 'safe'
return prediction
return None
# Streamlit app
st.title("Text Safety Evaluator")
# Load model and tokenizer once and store in session state
if 'model_and_tokenizer' not in st.session_state:
st.session_state.model_and_tokenizer = load_model()
# User input
user_input = st.text_area("Enter the text you want to evaluate:", height=100)
# Create an empty container for the result
result_container = st.empty()
if st.button("Evaluate"):
prediction = evaluate_text(user_input)
if prediction:
result_container.subheader("Evaluation Result:")
result_container.write(f"The text is evaluated as: **{prediction.upper()}**")
else:
result_container.warning("Please enter some text to evaluate.")
# Add logo at the bottom center (only once)
#if 'logo_displayed' not in st.session_state:
col1, col2, col3 = st.columns([1,2,1])
with col2:
logo_url = "https://github.com/walledai/walledeval/assets/32847115/d8b1d14f-7071-448b-8997-2eeba4c2c8f6"
logo = load_image_from_url(logo_url)
st.image(logo, use_column_width=True, width=500) # Adjust the width as needed
#st.session_state.logo_displayed = True
# Add information about Walled Guard Advanced (only once)
#if 'info_displayed' not in st.session_state:
col1, col2, col3 = st.columns([1,2,1])
with col2:
st.info("For a more performant version, check out Walled Guard Advanced. Connect with us at [email protected] for more information.")
#st.session_state.info_displayed = True