Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
# Define the template | |
TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information. | |
<START TEXT> | |
{prompt} | |
<END TEXT> | |
Answer: [/INST] | |
""" | |
# Load the model and tokenizer | |
def load_model(): | |
model_name = "walledai/walledguard-c" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return tokenizer, model | |
# Function to load image from URL | |
def load_image_from_url(url): | |
response = requests.get(url) | |
img = Image.open(BytesIO(response.content)) | |
return img | |
# Evaluation function | |
def evaluate_text(user_input): | |
if user_input: | |
# Get model and tokenizer from session state | |
tokenizer, model = st.session_state.model_and_tokenizer | |
# Prepare input | |
input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt") | |
# Generate output | |
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0) | |
# Decode output | |
prompt_len = input_ids.shape[-1] | |
output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) | |
# Determine prediction | |
prediction = 'unsafe' if 'unsafe' in output_decoded.lower() else 'safe' | |
return prediction | |
return None | |
# Streamlit app | |
st.title("Text Safety Evaluator") | |
# Load model and tokenizer once and store in session state | |
if 'model_and_tokenizer' not in st.session_state: | |
st.session_state.model_and_tokenizer = load_model() | |
# User input | |
user_input = st.text_area("Enter the text you want to evaluate:", height=100) | |
# Create an empty container for the result | |
result_container = st.empty() | |
if st.button("Evaluate"): | |
prediction = evaluate_text(user_input) | |
if prediction: | |
result_container.subheader("Evaluation Result:") | |
result_container.write(f"The text is evaluated as: **{prediction.upper()}**") | |
else: | |
result_container.warning("Please enter some text to evaluate.") | |
# Add logo at the bottom center (only once) | |
#if 'logo_displayed' not in st.session_state: | |
col1, col2, col3 = st.columns([1,2,1]) | |
with col2: | |
logo_url = "https://github.com/walledai/walledeval/assets/32847115/d8b1d14f-7071-448b-8997-2eeba4c2c8f6" | |
logo = load_image_from_url(logo_url) | |
st.image(logo, use_column_width=True, width=500) # Adjust the width as needed | |
#st.session_state.logo_displayed = True | |
# Add information about Walled Guard Advanced (only once) | |
#if 'info_displayed' not in st.session_state: | |
col1, col2, col3 = st.columns([1,2,1]) | |
with col2: | |
st.info("For a more performant version, check out Walled Guard Advanced. Connect with us at [email protected] for more information.") | |
#st.session_state.info_displayed = True |