Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from peft import PeftModel, PeftConfig, LoraConfig
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from datasets import load_dataset
|
6 |
+
from trl import SFTTrainer
|
7 |
+
|
8 |
+
ref_model = AutoModelForCausalLM.from_pretrained("w601sxs/b1ade-1b", torch_dtype=torch.bfloat16)
|
9 |
+
peft_model_id = "w601sxs/b1ade-1b-orca-chkpt-506k"
|
10 |
+
|
11 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
12 |
+
model = PeftModel.from_pretrained(ref_model, peft_model_id)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
14 |
+
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
def predict(text):
|
18 |
+
inputs = tokenizer(text, return_tensors="pt")
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=128)
|
21 |
+
out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0].split("answer:")[-1]
|
22 |
+
|
23 |
+
return out_text.split(text)[-1]
|
24 |
+
|
25 |
+
|
26 |
+
demo = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs='text',
|
29 |
+
outputs='text',
|
30 |
+
)
|
31 |
+
|
32 |
+
demo.launch()
|