w601sxs commited on
Commit
f7cdfd6
·
1 Parent(s): b5bc82b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from peft import PeftModel, PeftConfig, LoraConfig
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+ from datasets import load_dataset
6
+ from trl import SFTTrainer
7
+
8
+ ref_model = AutoModelForCausalLM.from_pretrained("w601sxs/b1ade-1b", torch_dtype=torch.bfloat16)
9
+ peft_model_id = "w601sxs/b1ade-1b-orca-chkpt-506k"
10
+
11
+ config = PeftConfig.from_pretrained(peft_model_id)
12
+ model = PeftModel.from_pretrained(ref_model, peft_model_id)
13
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
14
+
15
+ model.eval()
16
+
17
+ def predict(text):
18
+ inputs = tokenizer(text, return_tensors="pt")
19
+ with torch.no_grad():
20
+ outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=128)
21
+ out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0].split("answer:")[-1]
22
+
23
+ return out_text.split(text)[-1]
24
+
25
+
26
+ demo = gr.Interface(
27
+ fn=predict,
28
+ inputs='text',
29
+ outputs='text',
30
+ )
31
+
32
+ demo.launch()