Spaces:
Sleeping
Sleeping
vvv-knyazeva
commited on
Commit
·
9e9df39
1
Parent(s):
2c52d39
Update stri.py
Browse files
stri.py
CHANGED
@@ -53,36 +53,35 @@ for inputs, attention_masks in zip(input_ids, attention_mask):
|
|
53 |
book_embedding = model(inputs.unsqueeze(0), attention_mask=attention_masks.unsqueeze(0))
|
54 |
book_embedding = book_embedding[0][:, 0, :] #.detach().cpu().numpy()
|
55 |
book_embeddings.append(np.squeeze(book_embedding))
|
|
|
56 |
|
57 |
# Определение запроса пользователя
|
58 |
query = st.text_input("Введите запрос")
|
59 |
-
query_tokens = tokenizer.encode(query, add_special_tokens=True,
|
60 |
-
truncation=True, max_length=max_len)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
query_padded =
|
67 |
-
query_mask =
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
cosine_similarities = cosine_similarities.numpy()
|
84 |
-
|
85 |
-
indices = np.argsort(cosine_similarities)[::-1] # Сортировка по убыванию
|
86 |
-
|
87 |
-
for i in indices[:10]:
|
88 |
-
|
|
|
53 |
book_embedding = model(inputs.unsqueeze(0), attention_mask=attention_masks.unsqueeze(0))
|
54 |
book_embedding = book_embedding[0][:, 0, :] #.detach().cpu().numpy()
|
55 |
book_embeddings.append(np.squeeze(book_embedding))
|
56 |
+
|
57 |
|
58 |
# Определение запроса пользователя
|
59 |
query = st.text_input("Введите запрос")
|
|
|
|
|
60 |
|
61 |
+
if st.button('**Generate text**'):
|
62 |
+
query_tokens = tokenizer.encode(query, add_special_tokens=True,
|
63 |
+
truncation=True, max_length=max_len)
|
64 |
+
|
65 |
+
query_padded = np.array(query_tokens + [0] * (max_len - len(query_tokens)))
|
66 |
+
query_mask = np.where(query_padded != 0, 1, 0)
|
67 |
+
|
68 |
+
# Переведем numpy массивы в тензоры PyTorch
|
69 |
+
query_padded = torch.tensor(query_padded, dtype=torch.long)
|
70 |
+
query_mask = torch.tensor(query_mask, dtype=torch.long)
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
query_embedding = model(query_padded.unsqueeze(0), query_mask.unsqueeze(0))
|
74 |
+
query_embedding = query_embedding[0][:, 0, :] #.detach().cpu().numpy()
|
75 |
+
|
76 |
+
# Вычисление косинусного расстояния между эмбеддингом запроса и каждой аннотацией
|
77 |
+
cosine_similarities = torch.nn.functional.cosine_similarity(
|
78 |
+
query_embedding.squeeze(0),
|
79 |
+
torch.stack(book_embeddings)
|
80 |
+
)
|
81 |
+
|
82 |
+
cosine_similarities = cosine_similarities.numpy()
|
83 |
+
|
84 |
+
indices = np.argsort(cosine_similarities)[::-1] # Сортировка по убыванию
|
85 |
+
|
86 |
+
for i in indices[:10]:
|
87 |
+
st.write(books['title'][i])
|